Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physical and Permeability Parameters
3.2. Mechanical Parameters
3.3. Chemical Parameters
3.4. Assessment of the Suitability of Washed Mineral Waste as Materials for the Construction of Flood Embankments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ba | Barium |
Ca | Calcium |
Cd | Cadmium |
CE | Circular economy |
CIU | Isotropically consolidated undrained triaxial test |
Co | Cobalt |
Cr | Chromium |
Cu | Copper |
d.m. | Dry matter |
FAAS | Flame Atomic Absorption Spectrometry |
GC | Grit chamber |
K | Potassium |
Li | Lithium |
LOI | Loss on ignition |
L/S | Liquid-to-solid phase ratio |
LWPP | Luofang Water Purification Plant |
MIT | Massachusetts Institute of Technology |
MPS | Microwave Preparation System |
MW | Untreated mineral waste obtained directly from grit chambers |
Na | Sodium |
Ni | Nickel |
Pb | Lead |
PE | Population equivalent |
USBR | United States Bureau of Reclamation formula |
WMW | Washed mineral waste received from the rinsing process of the mineral waste from grit chambers |
WS | Sand from wastewater sewer cleaning |
Zn | Zinc |
References
- Pearce, D.; Turner, R. Economics of Natural Resources and the Environment, 1st ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1990; Available online: https://scholar.google.com/scholar_lookup?title=Economics+of+Natural+Resources+and+the+Environment&author=Pearce,+D.&author=Turner,+R.&publication_year=1989 (accessed on 10 July 2025).
- Su, B.; Heshmati, A.; Geng, Y.; Yu, X. A review of the circular economy in China: Moving from rhetoric to implementation. J. Clean. Prod. 2013, 42, 215–227. [Google Scholar] [CrossRef]
- Moraga, G.; Huysveld, S.; Mathieux, F.; Blengini, G.A.; Alaerts, L.; van Acker, K.V.; de Meester, S.D.; Dewulf, J. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 2019, 146, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Marcinek, P.; Duda, J.; Szołdrowska, D. Importance of Sustainable Mineral Resource Management in Implementing the Circular Economy (CE) Model and the European Green Deal Strategy. Resources 2020, 9, 55. [Google Scholar] [CrossRef]
- Pires, A.; Martinho, G. Waste hierarchy index for circular economy in waste management. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Abad-Segura, E.; Fuente, A.B.d.l.; González-Zamar, M.-D.; Belmonte-Ureña, L.J. Effects of Circular Economy Policies on the Environment and Sustainable Growth: Worldwide Research. Sustainability 2020, 12, 5792. [Google Scholar] [CrossRef]
- The European Commission. Communication No. 614, 2015. Closing the Loop—An EU Action Plan for the Circular Economy (COM no. 614, 2015); Commission of European Communities: Brussels, Belgium, 2015; Available online: https://scholar.google.com/scholar_lookup?title=Communication+No.+614,+2015.+Closing+the+Loop%E2%80%94An+EU+Action+Plan+for+the+Circular+Economy&author=European+Commission&publication_year=2015 (accessed on 10 July 2025).
- The European Commission. Communication No. 98, 2020. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe (COM no. 98, 2020); Commission of European Communities: Brussels, Belgium, 2020; Available online: https://scholar.google.com/scholar_lookup?title=Communication+No.+98,+2020.+A+New+Circular+Economy+Action+Plan+for+a+Cleaner+and+More+Competitive+Europe&author=European+Commission&publication_year=2020 (accessed on 10 July 2025).
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.; et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
- Bendixen, M.; Best, J.; Hackney, C.; Iversen, L.L. Time is running out for sand. Nature 2019, 571, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Bhoopathy, V.; Subramanian, S.S. The way forward to sustain environmental quality through sustainable sand mining and the use of manufactured sand as an alternative to natural sand. Environ. Sci. Pollut. Res. 2022, 29, 30793–30801. [Google Scholar] [CrossRef] [PubMed]
- Da, S.; Le Billon, P. Sand mining: Stopping the grind of unregulated supply chains. Extr. Ind. Soc. 2022, 10, 101070. [Google Scholar] [CrossRef]
- Gavriletea, M.D. Environmental Impacts of Sand Exploitation. Analysis of Sand Market. Sustainability 2017, 9, 1118. [Google Scholar] [CrossRef]
- Hougaard, I.-M. ‘As we exploit the river, we should give something back’: A moral ecology of sand extraction. Extr. Ind. Soc. 2023, 15, 101301. [Google Scholar] [CrossRef]
- Larson, C. Asia’s hunger for sand takes toll on ecology. Science 2018, 359, 964–965. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Brandt, J.; Lear, K.; Liu, J. A looming tragedy of the sand commons. Science 2017, 357, 970–971. [Google Scholar] [CrossRef] [PubMed]
- Perkins, L.; Royal, A.C.D.; Jefferson, I.; Hills, C.D. The Use of Recycled and Secondary Aggregates to Achieve a Circular Economy within Geotechnical Engineering. Geotechnics 2021, 1, 416–438. [Google Scholar] [CrossRef]
- Watari, T.; Cao, Z.; Serrenho, A.C.; Cullen, J. Growing role of concrete in sand and climate crises. iScience 2023, 26, 106782. [Google Scholar] [CrossRef] [PubMed]
- Kostrzewa, J.; Popielski, P.; Dąbska, A. Review of possibilities of using sandy waste obtained in wastewater treatment plants as an alternative raw material in construction. Mater. Econ. Logist. J. 2023, 3, 25–37. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Sand and Sustainability: Finding New Solutions for Environmental Governance of Global Sand Resources; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar] [CrossRef]
- Bendixen, M.; Iversen, L.L.; Best, J.; Franks, D.M.; Hackney, C.R.; Latrubesse, E.M.; Tusting, L.S. Sand, gravel, and UN Sustainable Development Goals: Conflicts, synergies, and pathways forward. One Earth 2021, 4, 1095–1111. [Google Scholar] [CrossRef]
- Le Bot, S.; Lafite, R.; Fournier, M.; Baltzer, A.; Desprez, M. Morphological and sedimentary impacts and recovery on a mixed sandy to pebbly seabed exposed to marine aggregate extraction (Eastern English Channel, France). Estuar. Coast. Shelf Sci. 2010, 89, 221–233. [Google Scholar] [CrossRef]
- Leal Filho, W.; Hunt, J.; Lingos, A.; Platje, J.; Vieira, L.W.; Will, M.; Gavriletea, M.D. The Unsustainable Use of Sand: Reporting on a Global Problem. Sustainability 2021, 13, 3356. [Google Scholar] [CrossRef]
- Marschke, M.; Rousseau, J.-F. Sand ecologies, livelihoods and governance in Asia: A systematic scoping review. Resour. Policy 2022, 77, 102671. [Google Scholar] [CrossRef]
- Oliveira, L.S.; Angulo, S.C.; John, V.M. Quantifying the informal sand market and its consequences: The case of Brazil. Environ. Dev. 2024, 51, 101032. [Google Scholar] [CrossRef]
- Sreebha, S.; Padmalal, D. Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study. Environ Manag 2011, 47, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Sverdrup, H.U.; Koca, D.; Schlyter, P. A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model. Biophys. Econ. Resour. Qual. 2017, 2, 8. [Google Scholar] [CrossRef]
- Almeida, F.; Vieira, C.S.; Carneiro, J.R.; Lopes, M.d.L. Drawing a Path towards Circular Construction: An Approach to Engage Stakeholders. Sustainability 2022, 14, 5314. [Google Scholar] [CrossRef]
- Gamage, I.; Senaratne, S.; Perera, S.; Jin, X. Implementing Circular Economy throughout the Construction Project Life Cycle: A Review on Potential Practices and Relationships. Buildings 2024, 14, 653. [Google Scholar] [CrossRef]
- Ghufran, M.; Khan, K.I.A.; Ullah, F.; Nasir, A.R.; Al Alahmadi, A.A.; Alzaed, A.N.; Alwetaishi, M. Circular Economy in the Construction Industry: A Step towards Sustainable Development. Buildings 2022, 12, 1004. [Google Scholar] [CrossRef]
- Torres, A.; Simoni, M.U.; Keiding, J.K.; Müller, D.B.; Ermgassen, S.O.S.E.Z.; Liu, J.; Jaeger, J.A.G.; Winter, M.; Lambin, E.F. Sustainability of the global sand system in the Anthropocene. One Earth 2021, 4, 639–650. [Google Scholar] [CrossRef]
- Chrispim, M.C.; Scholz, M.; Nolasco, M.A. A framework for resource recovery from wastewater treatment plants in megacities of developing countries. Environ. Res. 2020, 188, 109745. [Google Scholar] [CrossRef] [PubMed]
- Lizárraga-Mendiola, L.; López-León, L.D.; Vázquez-Rodríguez, G.A. Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review. Sustainability 2022, 14, 16343. [Google Scholar] [CrossRef]
- Papa, M.; Foladori, P.; Guglielmi, L.; Bertanza, G. How far are we from closing the loop of sewage resource recovery? A real picture of municipal wastewater treatment plants in Italy. J. Environ. Manag. 2017, 198, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Adam, C.; Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 2020, 22, 682–697. [Google Scholar] [CrossRef]
- Smol, M. Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery. Energies 2023, 16, 3911. [Google Scholar] [CrossRef]
- Sun, X.; He, J.; Lv, W.; Wu, S.; Peng, Y.; Peng, Y.; Fei, J.; Wu, Z. Characteristics and Resource Recovery Strategies of Solid Waste in Sewerage Systems. Sustainability 2023, 15, 1662. [Google Scholar] [CrossRef]
- The European Commission. 2014/955/EU: Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and the Council. Off. J. Eur. Union 2014, 1–43. Available online: https://eur-lex.europa.eu/eli/dec/2014/955/oj (accessed on 12 June 2025).
- Czop, M.; Wyczarska-Kokot, J.; Kalka, J.; Kudlek, E.; Balcerzak, L.; Jamry, A.; Kopiec, W.; Nowak, K.; Piwowarczyk, M.; Zackiewicz, W. Possibilities of using waste from wastewater treatment plants to create soil-like materials. Desalination Water Treat. 2025, 321, 100907. [Google Scholar] [CrossRef]
- Kostrzewa, J.; Popielski, P.; Dąbska, A. Geotechnical Properties of Washed Mineral Waste from Grit Chambers and Its Potential Use as Soil Backfill and Road Embankment Materials. Buildings 2024, 14, 766. [Google Scholar] [CrossRef]
- Czop, M.; Petryk, A.; Balcerzak, L.; Jamry, A.; Kopiec, W.; Nowak, K.; Piwowarczyk, M.; Zackiewicz, W. Testing and Evaluation of Physical and Chemical Properties of Waste from Desanding. IM 2024, 2, 129–134. [Google Scholar] [CrossRef]
- Górka, J.; Poproch, D.; Cimochowicz-Rybicka, M.; Łuszczek, B. Characteristics of sand recovered from the municipal wastewater treatment plant. Miner. Resour. Manag. 2023, 39, 109–123. [Google Scholar] [CrossRef]
- Bieniowski, M.; Bauman-Kaszubska, H.; Kozakiewicz, P. Considerations on the management of sand generated in wastewater treatment plants. Forum Eksploatatora 2020, 3–4, 52–55. Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=Rozwa%C5%BCania+na+temat+zagospodarowania+piasku+powstaj%C4%85cych+w+oczyszczalniach+%C5%9Bciek%C3%B3w&btnG= (accessed on 10 July 2025). (In Polish).
- Borges, N.B.; Campos, J.R.; Pablos, J.M. Characterization of residual sand removed from the grit chambers of a wastewater treatment plant and its use as fine aggregate in the preparation of non-structural concrete. Water Pract. Technol. 2015, 10, 164–171. [Google Scholar] [CrossRef]
- Vítěz, T.; Kukla, R.; Trávníček, P. Physical properties of sand from the waste water treatment plants. Acta Univ. Agric. Silvic. Mendel. Brun. 2010, 58, 233–238. [Google Scholar] [CrossRef]
- Mirabella, N.; Allacker, K. The population equivalent as a novel approach for life cycle assessment of cities and inter-city comparisons. Int. J. Life Cycle Assess. 2021, 26, 1623–1647. [Google Scholar] [CrossRef]
- Andriulaityte, I.; Valentukeviciene, M.; Zurauskiene, R. Research on the Reusability of Bentonite Waste Materials for Residual Chlorine Removal. Materials 2024, 17, 5647. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 17892-4:2004; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 4: Determination of Particle Size Distribution. International Organization for Standardization: Geneva, Switzerland, 2004.
- Pisarczyk, S. Filled Soil. In Geotechnical Properties and Methods of Their Testing, 4th ed.; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2022; Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=Pisarczyk+2022+Grunty+nasypowe.+W%C5%82a%C5%9Bciwo%C5%9Bci+geotechniczne+i+metody+ich+badania&btnG= (accessed on 10 July 2025). (In Polish)
- ISO/TS 17892-3:2004; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 3: Determination of Particle Density—Pycnometer Method. International Organization for Standardization: Geneva, Switzerland, 2004.
- PN-B-04481:1988; Construction Soil—Testing of Soil Samples. Polish Committee for Standardization: Warsaw, Poland, 1988. (In Polish)
- Park, K.; Kim, J.-H.; Shin, J.; Lee, H.; Nam, B.H. A Study on the Effect of Graphene Oxide on Geotechnical Properties of Soil. Materials 2024, 17, 6199. [Google Scholar] [CrossRef] [PubMed]
- Sulewska, M.J.; Tymosiak, D. Analysis of compaction parameters of the exemplary non-cohesive soil determined by Proctor methods and vibrating table tests. Ann. Warsaw Univ. Life Sci.–SGGW, Land Reclam. 2018, 50, 99–108. [Google Scholar] [CrossRef]
- ISO/TS 17892-11:2004; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 11: Determination of Permeability by Constant and Falling Head. International Organization for Standardization: Geneva, Switzerland, 2004.
- Wiłun, Z. Outline of Geotechnics, 10th ed.; Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 2013; Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=Wi%C5%82un+2013+Zarys+Geotechniki&btnG= (accessed on 10 July 2025). (In Polish)
- Head, K.H.; Epps, R.J. Manual of Soil Laboratory Testing, Volume 3: Effective Stress Tests, 3rd ed.; Whittles Publishing: Dunbeath, UK, 2014. [Google Scholar]
- Kaczmarek, Ł.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Grygoruk, M.; Jastrzębska, M.; Szatyłowicz, J. Hydraulic conductivity tests in the triaxial stress state: Is peat an aquitard or an aquifer? Water 2023, 15, 1064. [Google Scholar] [CrossRef]
- ISO 17892-11:2019; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 11: Permeability Tests. International Organization for Standardization: Geneva, Switzerland, 2019.
- Marschalko, M.; Zięba, Z.; Niemiec, D.; Neuman, D.; Mońka, J.; Dąbrowska, J. Suitability of Engineering-Geological Environment on the Basis of Its Permeability Coefficient: Four Case Studies of Fine-Grained Soils. Materials 2021, 14, 6411. [Google Scholar] [CrossRef] [PubMed]
- Zabielska-Adamska, K. Sewage Sludge Bottom Ash Characteristics and Potential Application in Road Embankment. Sustainability 2020, 12, 39. [Google Scholar] [CrossRef]
- ISO/TS 17892-10:2004; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 10: Direct Shear Tests. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 17892-9:2018; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 9: Consolidated Triaxial Compression Tests on Water Saturated Soils. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO/TS 17892-5:2004; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 5: Incremental Loading Oedometer Test. International Organization for Standardization: Geneva, Switzerland, 2004.
- Vukićević, M.; Marjanović, M.; Pujević, V.; Jocković, S. The Alternatives to Traditional Materials for Subsoil Stabilization and Embankments. Materials 2019, 12, 3018. [Google Scholar] [CrossRef] [PubMed]
- Demeter, A.; Saláta, D.; Kovács, E.T.; Szirmai, O.; Trenyik, P.; Meinhardt, S.; Rusvai, K.; Verbényiné Neumann, K.; Schermann, B.; Szegleti, Z.; et al. Effects of the Invasive Tree Species Ailanthus altissima on the Floral Diversity and Soil Properties in the Pannonian Region. Land 2021, 10, 1155. [Google Scholar] [CrossRef]
- Lisetskii, F.N.; Buryak, Z.A.; Marinina, O.A.; Ukrainskiy, P.A.; Goleusov, P.V. Features of Soil Organic Carbon Transformations in the Southern Area of the East European Plain. Geosciences 2023, 13, 278. [Google Scholar] [CrossRef]
- Spencer, C.A.; Sass, H.; van Paassen, L. Increased Microbially Induced Calcium Carbonate Precipitation (MICP) Efficiency in Multiple Treatment Sand Biocementation Processes by Augmentation of Cementation Medium with Ammonium Chloride. Geotechnics 2023, 3, 1047–1068. [Google Scholar] [CrossRef]
- PN-ISO 14235:2003; Soil Quality—Determination of Organic Carbon Content by Oxidation with Dichromate (VI) in a Sulfuric Acid (VI) Medium. Polish Committee for Standardization: Warsaw, Poland, 2003. (In Polish)
- PN-EN ISO 14688-1:2018-05; Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 1: Identification and Description. Polish Committee for Standardization: Warsaw, Poland, 2018. (In Polish)
- PN-ISO 11047:2001; Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel, and Zinc in Soil Extracts with Aqua Regia—Flame and Electrothermal Atomic Absorption Spectrometry Methods. Polish Committee for Standardization: Warsaw, Poland, 2001. (In Polish)
- Radziemska, M.; Fronczyk, J. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland. Int. J. Environ. Res. Public Health 2015, 12, 13372–13387. [Google Scholar] [CrossRef] [PubMed]
- Remeteiová, D.; Ružičková, S.; Heželová, M.; Pikna, Ľ. Utilization of Extraction Procedures for Evaluating Environmental Risk from Waste Materials. Toxics 2023, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- PN-EN 12457-4:2006; Characterisation of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges-Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/kg for Materials with Particle Size Below 10 mm (Without or with Size Reduction). Polish Committee for Standardization: Warsaw, Poland, 2006. (In Polish)
- Simon, F.-G.; Scholz, P. Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany. Appl. Sci. 2023, 13, 13228. [Google Scholar] [CrossRef]
- Szarek, Ł. Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Arch. Environ. Prot. 2020, 46, 49–59. [Google Scholar] [CrossRef]
- PN-EN ISO 10523:2012; Water Quality—Determination of pH. Polish Committee for Standardization: Warsaw, Poland, 2012.
- PN-EN 27888:1999; Water Quality—Determination of Specific Electrical Conductivity. Polish Committee for Standardization: Warsaw, Poland, 1999. (In Polish)
- PN-EN ISO 14688-2:2018-05; Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 2: Principles for a Classification. Polish Committee for Standardization: Warsaw, Poland, 2018. (In Polish)
- Kolosovska, T.; Bauer, S.K. Evaluation of grit properties at a medium-capacity wastewater treatment plant: A case study. Resour. Conserv. Recycl. Adv. 2022, 14, 200080. [Google Scholar] [CrossRef]
- Myślińska, E. Laboratory Soil Tests, 1st ed.; Wydawnictwa Uniwersytetu Warszawskiego: Warsaw, Poland, 2006; Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=My%C5%9Bli%C5%84ska+2006+Laboratoryjne+badania+grunt%C3%B3w&btnG= (accessed on 10 July 2025). (In Polish)
- Pisarczyk, S.; Rymsza, B. Laboratory and Field Tests of Soil, 2nd ed.; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2003; Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=Pisarczyk+S.%2C+Rymsza+B.+2003+Badania+laboratoryjne+i+polowe+grunt%C3%B3w&btnG= (accessed on 10 July 2025). (In Polish)
- Akram, I.; Azam, S. Effect of Sample Preparation on Saturated and Unsaturated Shear Strength of Cohesionless Soils. Geotechnics 2023, 3, 212–223. [Google Scholar] [CrossRef]
- Dąbska, A.; Turowska, K.; Pisarczyk, S. Capillary properties of soil—Cap illarity phenomenon in geoengineering. Gospod. Wodna 2022, 11, 20–30. (In Polish) [Google Scholar] [CrossRef]
- Nam, J.M.; Yun, J.M.; Lee, K.I.; You, S.K.; Kim, T.-H. Relationship between cohesion and tensile strength in wet sand at low normal stresses. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 5–9 October 2009. [Google Scholar] [CrossRef]
- Buca, B. The possibility and advisability of taking into account apparent coherence in geotechnical calculations. Inżynieria Morska 1985, 6, 212–213. (In Polish) [Google Scholar]
- Ravindran, S.; Gratchev, I. Effect of Water Content on Apparent Cohesion of Soils from Landslide Sites. Geotechnics 2022, 2, 385–394. [Google Scholar] [CrossRef]
- Olejnik, D. Evaluation of the Heavy Metals Content in Sewage Sludge from Selected Rural and Urban Wastewater Treatment Plants in Poland in Terms of Its Suitability for Agricultural Use. Sustainability 2024, 16, 5198. [Google Scholar] [CrossRef]
- Tytła, M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study. Int. J. Environ. Res. Public Health 2019, 16, 2430. [Google Scholar] [CrossRef] [PubMed]
- Turek, A.; Wieczorek, K.; Wolf, W.M. Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—An Analytical Problem. Sustainability 2019, 11, 1753. [Google Scholar] [CrossRef]
- Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on Substances Particularly Harmful to the Aquatic Environment and the Conditions That Must Be Met When Introducing Sewage into Water or Soil and Discharging Rainwater or Meltwater into Water or Water Facilities. Journal of Laws of the Republic of Poland Item 1311/15.07.2019. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (accessed on 12 June 2025). (In Polish)
- PN-B-12095:1997; Water Reclamation Structures—Embankments—Requirements and Acceptance Tests. Polish Committee for Standardization: Warsaw, Poland, 1997. (In Polish)
- Technical Conditions of Execution and Acceptance. Earthworks. Ministerstwo Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa: Warsaw, Poland, 1994; Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=Warunki+techniczne+wykonania+i+odbioru.+Roboty+ziemne.+Warszawa%2C+1994.&btnG= (accessed on 10 July 2025). (In Polish)
- Regulation of the Minister of Environment of 20 April 2007 on the Technical Conditions to Be Met by Hydraulic Structures and Their Location. Journal of Laws of the Republic of Poland Item 579/16.05.2007. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20070860579 (accessed on 12 June 2025). (In Polish)
- Borys, M.; Mosiej, K. Assessment of the Technical Condition of Flood Embankments; Wydawnictwo IMUZ: Falenty, Poland, 2008; Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=Borys+M.%2C+Mosiej+K.+%282008%29.+Oceny+stanu+technicznego+obwa%C5%82owa%C5%84+przeciwpowodziowych&btnG=] (accessed on 10 July 2025). (In Polish)
- Design of Small Dams; A Water Resources Technical PublicationU.S. Department of the Interior, Bureau of Reclamation: Washington, DC, USA, 1987; Available online: https://scholar.google.com/scholar?q=Design+of+small+dams.+A+water+resources+technical+publication.+United+States+Department+of+the+Interior.+Bureau+of+reclamation.+1987&hl=pl&as_sdt=0%2C5&as_ylo=1987&as_yhi=2010 (accessed on 10 July 2025).
- Stephens, T. Manual on Small Earth Dams: A Guide to Siting, Design and Construction; FAO Irrigation and Drainage Paper: Rome, Italy, 2010; Available online: https://scholar.google.com/scholar?hl=pl&as_sdt=0%2C5&q=Stephens+T.+%282010%29.+Manual+on+small+earth+dams%3A+a+guide+to+siting%2C+design+and+construction&btnG= (accessed on 10 July 2025).
- Sharp, M.; Wallis, M.; Deniaud, F.; Hersch-Burdick, R.; Tourment, R.; Matheu, E.; Seda-Sanabria, Y.; Wersching, S.; Veylon, G.; Durand, E. The International Levee Handbook; CIRIA: London, UK, 2013; Available online: https://scholar.google.com/scholar_lookup?title=The+International+Levee+Handbook&author=Sharp,+M.&author=Wallis,+M.&author=Deniaud,+F.&author=Hersch-Burdick,+R.&author=Tourment,+R.&author=Matheu,+E.&author=Seda-Sanabria,+Y.&author=Wersching,+S.&author=Veylon,+G.&author=Durand,+E.&publication_year=2013 (accessed on 10 July 2025).
- Design Manual for Roads and Bridges; Highways Agency, H.M.S.O: London, UK, 2008; Available online: https://scholar.google.com/scholar_lookup?title=Design%20manual%20for%20roads%20and%20bridges&publication_year=2000&author=Agency%2CHighways (accessed on 10 July 2025).
- Batog, A.; Stróżyk, J. Selection of soil material and soil mixtures for construction and modernization of flood dykes. Gospod. Wodna 2017, 12, 374–378. (In Polish) [Google Scholar]
- Regulation of the Minister of the Environment of 1 September 2016 on Assessing Ground Surface Contamination. Journal of Laws of the Republic of Poland Item 1395/05.09.2016. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001395 (accessed on 12 June 2025). (In Polish)
- Regulation of the Minister of Climate and Environment of 31 October 2024 Amending the Regulation on Assessing Ground Surface Pollution. Journal of Laws of the Republic of Poland Item 1657/13.11.2024. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001657 (accessed on 12 June 2025). (In Polish)
- Regulation of the Minister of Economy of 16 July 2015 on Admitting Waste to be Landfilled. Journal of Laws of the Republic of Poland Item 1277/01.09.2015. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001277 (accessed on 12 June 2025). (In Polish)
- The European Commission. 2003/33/EC: Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off. J. Eur. Union 2003, 1–23. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003D0033 (accessed on 12 June 2025).
Name/Type of Material Indicated by the Authors | Conducted Tests | Suggested Applications | Site [References] |
---|---|---|---|
Sand from wastewater sewer cleaning (WS), with waste code 19 08 02 | Humidity, bulk density, degradable organic substances, total organic carbon, total nitrogen, Na, Ca, K, Li, Ba, organic matter content (LOI), leachability of harmful substances, and heavy metals. | Soil-like materials. | Gliwice, Poland [39] |
Washed mineral waste (WMW), with waste code 19 12 09 | Organic matter content, granulometric composition (fraction content), sand equivalent, passive capillarity, specific density of solids, quantities characterizing the limiting states of compaction (dry density, void ratio, and porosity), maximum dry density, optimal moisture content, and degree of saturation after compaction, permeability coefficient, direct shear tests (internal friction angle and apparent cohesion). | Soil backfill and road embankment materials. | Warsaw, Poland [40] |
Sand from sand separators of wastewater treatment plants, with waste code 19 08 02 | Moisture, dry matter, bulk density, degradable organic substances, total organic carbon, ammonium nitrogen, grain size distribution, organic matter content (LOI), leachability of harmful substances, and heavy metals. | Construction aggregates. | Bielsko-Biala, Gliwice, Poland [41] |
Sandy waste, with waste code 19 12 09 | Fraction content, grain size distribution, and dry organic matter. | Alternative raw material in construction. | Warsaw, Poland [19] |
Sand from grit chambers, with waste code 19 08 02 | Dry matter, dry mineral matter, organic matter, grain-size composition, leachability of harmful substances and heavy metals, fluorides, and dissolved organic carbon. | Fine-grained aggregate in the production of concrete. | Cracow, Poland [42] |
Waste from the grit chamber (GC) 1 | Inorganic content, organic matter, and heavy metal content. | Building materials. | Shenzhen, China [37] |
Waste sand, with waste code 19 12 09 | Humidity, dry matter, dry mineral matter, dry organic matter, particle size distribution, content of harmful substances, and heavy metal. | Aggregate for the production of building materials (concrete), an additive to soils for backfilling excavations. | Mazovia, Poland [43] |
Residual sand removed from grit chambers 1 | Total solids, total fixed solids, total volatile solids, percentage of moisture, the composition of organic and mineral fractions retained in the sieves in the grain size test, axial compressive strength, and tensile strength by diametral compression of samples. | Fine aggregate in the preparation of non-structural concrete elements, e.g., sidewalks and curbs. | São Carlos, Brazil [44] |
Sewage sand 2 | Content of total solids, organic matter content (LOI), specific density, and particle size distribution. | Building materials. | Moravia, Czech Republic [45] |
No. | Parameter | Sample No. | ||
---|---|---|---|---|
W4 1 | W1.4 | P-2 | ||
1. | Gravel fraction [%] | 5.69 1 | 9.42 1 | 4.45 |
2. | Sand fraction [%] | 94.17 1 | 90.44 1 | 95.43 |
3. | Silt + Clay fraction [%] | 0.14 1 | 0.14 1 | 0.12 |
4. | Effective diameter D60 [mm] | 0.48 1 | 0.44 1 | 0.55 |
5. | Effective diameter D50 [mm] | 0.41 1 | 0.40 1 | 0.48 |
6. | Effective diameter D30 [mm] | 0.31 1 | 0.30 1 | 0.35 |
7. | Effective diameter D20 [mm] | 0.27 1 | 0.24 1 | 0.32 |
8. | Effective diameter D10 [mm] | 0.22 1 | 0.20 1 | 0.25 |
9. | Uniformity coefficient CU [−] | 2.18 1 | 2.20 1 | 2.20 |
10. | Curvature coefficient CC [−] | 0.91 1 | 1.02 1 | 0.89 |
11. | Specific density ρs [g/cm3] | 2.55 1 | 2.62 | 2.62 |
12. | Dry density corresponding to the state of the loosest possible composition of soil grains ρdmin [g/cm3] | 1.54 1 | 1.56 | 1.57 |
13. | Maximum void ratio emax [−] | 0.656 1 | 0.679 | 0.669 |
14. | Maximum porosity nmax [−] | 0.396 1 | 0.405 | 0.401 |
15. | Dry density corresponding to the state of the densest possible composition of soil grains ρdmax [g/cm3] | 1.87 1 | 1.84 | 1.85 |
16. | Minimum void ratio emin [−] | 0.364 1 | 0.424 | 0.416 |
17. | Minimum porosity nmin [−] | 0.267 1 | 0.298 | 0.294 |
18. | Maximum dry density ρds [g/cm3] | 1.78 1 | 1.78 | 1.79 |
19. | Optimum moisture content wopt [%] | 11.23 1 | 11.34 | 11.95 |
20. | Degree of saturation after compaction Sr [−] | 0.66 1 | 0.63 | 0.68 |
21. | Hydraulic conductivity (in ITB-ZW-K2 apparatus) k10 [m/d] 2 | 5.37 1 | 4.38 | 7.71 |
22. | Hydraulic conductivity (in triaxial compression apparatus) k10 [m/d] 2 | 2.6 | 0.9 | 1.1 |
23. | Hydraulic conductivity (empirical formulas) k10 [m/d]: | 2406.77 | 2284.96 | 3361.87 |
(a) Hazen formula | 110.14 | 96.50 | 176.10 | |
(b) USBR formula | 2.25 3 | 3.07 3 | 4.31 3 | |
(c) Slichter formula | 8.22 4 | 8.40 4 | 11.97 4 |
No. | Parameter | Sample no. | ||
---|---|---|---|---|
W4 | W1.4 | P-2 | ||
1. | Organic substances content [%] | 1.49 ± 0.14 | 0.24 ± 0.01 | 1.01 ± 0.14 |
2. | Calcium carbonate content [%] | 2.63 ± 0.63 | 2.25 ± 0.94 | 3.29 ± 0.91 |
3. | pH [−] | 7.68–7.81 | 7.36–7.61 | 7.36–7.50 |
4. | Specific electrical conductivity [mS/cm] | 0.260 ± 0.016 | 0.369 ± 0.061 | 0.421 ± 0.012 |
5. | Zinc (Zn) content:
| 67.44 ± 13.46 n.d. 2 ~100 | 72.32 ± 26.55 n.d. 2 ~100 | 76.28 ± 21.90 n.d. 2 ~100 |
6. | Lead (Pb) content:
| 14.12 ± 0.12 n.d. 2 ~100 | 31.34 ± 34.36 n.d. 2 ~100 | 49.72 ± 81.56 1.36 ± 0.01 97.20 |
7. | Copper (Cu) content:
| 47.22 ± 17.35 1.48 ± 0.12 96.87 | 38.44 ± 12.44 0.03 ± 0.02 99.92 | 29.13 ± 22.29 0.12 ± 0.09 99.59 |
8. | Cadmium (Cd) content:
| 1.22 ± 0.29 0.08 ± 0.01 93.44 | 1.17 ± 0.15 0.10 ± 0.02 91.45 | 1.19 ± 0.17 0.08 ± 0.03 93.28 |
9. | Chromium (Cr) content:
| 5.84 ± 2.61 n.d. 2 ~100 | 3.79 ± 0.74 n.d. 2 ~100 | 6.49 ± 3.26 0.04 ± 0.01 99.38 |
10. | Nickel (Ni) content:
| 10.19 ± 0.87 0.21 ± 0.06 97.94 | 9.58 ± 3.19 0.11 ± 0.05 98.85 | 10.07 ± 1.46 0.43 ± 0.11 95.73 |
11. | Cobalt (Co) content:
| 4.98 ± 0.58 0.20 ± 0.05 95.98 | 5.19 ± 2.29 0.17 ± 0.04 96.72 | 4.61 ± 0.72 0.24 ± 0.03 94.79 |
Type of Waste | Value | References |
---|---|---|
Washed mineral waste | 0.78–14.44 | [43] |
Mineral waste | 5.50–8.00 1 | [37] |
1.11 | [39] | |
1.11–15.91 | [41] | |
1.80 2 | [42] | |
1.00 ± 0.17 3 | [44] | |
1.58–68.49 | [45] |
Heavy Metal Content | In material | In extracts | |||
---|---|---|---|---|---|
Unit | [mg/kg d.m.] | [mg/dm3] | [mg/kg d.m.] | ||
Metal/Type of Waste | WMW 1 | MW 2 | MW 3 | MW 4 | |
Zn | <5.0–491 | 69.75–73.50 | <0.08 | 0.10–0.35 | 1.00–3.50 |
Pb | <5.0–17.5 | 20.25–49.00 | <0.20 | 0.005–0.05 | 0.05–0.50 |
Cu | <5.0–677 | 10.50–81.00 | <0.06 | n.d. 6—0.08 | n.d. 6—0.80 |
Cd | <0.5 | 6.75–10.50 | <0.04 | n.d. 6—0.02 | n.d. 6—0.20 |
Cr | <5.0–11 | 0.00–10.50 | <0.20 | 0.02–0.04 | 0.20–0.40 |
Ni | <5.0–9.76 | 3.50–24.75 | <0.20 | n.d. 6 | n.d. 6 |
Co | – 5 | – 5 | – 5 | n.d. 6—0.04 | n.d. 6—0.40 |
Guidelines | PN-B-12095:1997 Standard [91] | Technical Conditions of Execution and Acceptance of Earthworks [92] | Assessment Projects Regarding the Technical Condition of Flood Embankments [94] |
---|---|---|---|
Acceptable soils: | Organic (excluding certain peats and gyttjas) for class 1 III–IV structures. | No data | Mineral, organic, and anthropogenic. |
Indicative scope and conditions of use: |
| Moisture content before compaction within the range of wopt ± 2% (specified only for cores and screens of earth dams). |
|
Soils should not contain: | Frozen soils, wastes, rubble, plant debris, tree stumps, and other contaminants whose quality cannot be controlled. | Frozen soils, soils whose quality cannot be controlled, and soils containing contaminants (wastes, rubble, plant debris, tree stumps). | No data |
Unsuitable soils: |
|
| Swelling and water-soluble (incorporated without special treatments). 2 |
Guidelines | Manual on Small Earth Dams [96] | Design of Small Dams [95] | The International Levee Handbook [97] | Design Manual for Roads and Bridges [98] |
---|---|---|---|---|
Most recommended soils: | Sands and clays, as well as a mixture of both fractions. |
| No data | No data |
Not recommended soils: | No data | Organic (due to their susceptibility to decomposition). | No data | No data |
Soils to avoid: |
| No data | Organic (with a significant organic substances content). |
|
Permissible Contents of Substances Causing Risk [mg/kg d.m.] | ||||||||
---|---|---|---|---|---|---|---|---|
Group of Soil | For Depth Below Ground Level [m] | Zn | Pb | Cu | Cd | Cr | Ni | Co |
I 1 | 0–0.25 | 500 | 200 | 200 | 2 | 200 | 150 | 50 |
>0.25 3 | 300 | 100 | 150 | 3 | 300 | 100 | 30 | |
IV 2 | 0–0.25 | 2000 | 600 | 600 | 15 | 1000 | 500 | 200 |
>0.25 3 | 300 | 200 | 200 | 6 | 300 | 100 | 50 | |
Leaching limits of heavy metals at landfills of a given type [mg/kg d.m.] | ||||||||
Hazardous waste | 200 | 50 | 100 | 5 | 70 | 40 | – 4 | |
Non-hazardous waste | 50 | 10 | 50 | 1 | 10 | 10 | – 4 | |
Inert waste | 4 | 0.5 | 2 | 0.04 | 0.5 | 0.4 | – 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewa, J.; Kaczmarek, Ł.; Bogacki, J.; Dąbska, A.; Wojtkowska, M.; Popielski, P. Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials. Materials 2025, 18, 3384. https://doi.org/10.3390/ma18143384
Kostrzewa J, Kaczmarek Ł, Bogacki J, Dąbska A, Wojtkowska M, Popielski P. Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials. Materials. 2025; 18(14):3384. https://doi.org/10.3390/ma18143384
Chicago/Turabian StyleKostrzewa, Jacek, Łukasz Kaczmarek, Jan Bogacki, Agnieszka Dąbska, Małgorzata Wojtkowska, and Paweł Popielski. 2025. "Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials" Materials 18, no. 14: 3384. https://doi.org/10.3390/ma18143384
APA StyleKostrzewa, J., Kaczmarek, Ł., Bogacki, J., Dąbska, A., Wojtkowska, M., & Popielski, P. (2025). Potential Use of Wastewater Treatment Plant Washed Mineral Waste as Flood Embankment Materials. Materials, 18(14), 3384. https://doi.org/10.3390/ma18143384