Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation
Abstract
1. Introduction
1.1. Background on Optical Tactile Sensing
1.2. Objective and Scope of the Present Study
2. Materials and Methods
2.1. Sample Preparation
2.2. Optical Characterization
2.3. Measurements with ToF
3. Results and Discussion
3.1. Optical Properties
3.2. ToF Measurements
4. Conclusions
- Low-scattering, optically transparent materials (e.g., acrylic, FL Clear ML) are optimal for FTIR-based contact sensing.
- High-scattering, moderately reflective materials (e.g., TechClear 1, Liqcreate) are more effective for near-proximity sensing.
- Black targets exhibit reduced detectability due to intrinsic optical limitations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCD | Charge-coupled device |
DRA | Diffuse reflectance accessory |
FTIR | Frustrated total internal reflection |
HSV | HSV color model (Hue, Saturation, Value) |
LiDAR | Light detection and ranging |
MCML | Monte Carlo Multi-Layered |
MIS | Minimally invasive surgary |
MRI | Magnetic resonance imaging |
RGB | Red, Green, and Blue (additive color model) |
SE | Spectroscopic ellipsometry |
ToF | Time-of-flight |
TIR | Total internal reflection |
UMA | Universal measurement accessory |
References
- Maekawa, H.; Tanie, K.; Komoriya, K. A Finger-Shaped Tactile Sensor Using an Optical Waveguide. In Proceedings of the IEEE Systems, Man and Cybernetics Conference, Le Touquet, France, 17–20 October 1993; Volume 5, pp. 403–408. [Google Scholar] [CrossRef]
- Begej, S. Planar and Finger-Shaped Optical Tactile Sensors for Robotic Applications. IEEE J. Robot. Autom. 2002, 4, 472–484. [Google Scholar] [CrossRef]
- Heo, J.-S.; Kim, J.-Y.; Lee, J.-J. Tactile Sensors Using the Distributed Optical Fiber Sensors. In Proceedings of the 3rd International Conference on Sensing Technology, Taipei, Taiwan, 30 November–3 December 2008; pp. 486–490. [Google Scholar] [CrossRef]
- Ito, Y.; Kim, Y.; Nagai, C.; Obinata, G. Shape Sensing by Vision-Based Tactile Sensor for Dexterous Handling of Robot Hands. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, 21–24 August 2010; pp. 574–579. [Google Scholar] [CrossRef]
- Lepora, N.F.; Ward-Cherrier, B. Superresolution with an Optical Tactile Sensor. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 2686–2691. [Google Scholar] [CrossRef]
- Kim, J.T.; Choi, H.; Shin, E.; Park, S.; Kim, I.G. Graphene-Based Optical Waveguide Tactile Sensor for Dynamic Response. Sci. Rep. 2018, 8, 16118. [Google Scholar] [CrossRef] [PubMed]
- Van Duong, L.; Ho, V.A. Large-Scale Vision-Based Tactile Sensing for Robot Links: Design, Modeling, and Evaluation. IEEE Trans. Robot. 2021, 37, 390–403. [Google Scholar] [CrossRef]
- Cao, D.; Hu, J.; Li, Y.; Wang, S.; Liu, H. Polymer-Based Optical Waveguide Triaxial Tactile Sensing for 3-Dimensional Curved Shell. IEEE Robot. Autom. Lett. 2022, 7, 3443–3450. [Google Scholar] [CrossRef]
- Yoo, U.; Yuan, W. In-Hand Pose Estimation with Optical Tactile Sensor for Robotic Electronics Assembly; Tech. Rep.; Robotics Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2022; Available online: https://uksangyoo.github.io/assets/pdf/Siemens_Electronics_Assembly.pdf (accessed on 12 February 2025).
- Wang, K.; Du, S.; Kong, J.; Zheng, M.; Li, S.; Liang, E.; Zhu, X. Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing. Materials 2025, 18, 322. [Google Scholar] [CrossRef]
- Wang, H.; Ma, L.; Nie, Q.; Hu, X.; Li, X.; Min, R.; Wang, Z. Optical Tactile Sensor Based on a Flexible Optical Fiber Ring Resonator for Intelligent Braille Recognition. Opt. Express 2025, 33, 2512–2528. [Google Scholar] [CrossRef]
- Hoffmann, V.; Paredes-Valles, F.; Cavinato, V. From Soft Materials to Controllers with NeuroTouch: A Neuromorphic Tactile Sensor for Real-Time Gesture Recognition. arXiv 2025, arXiv:2501.19174. [Google Scholar] [CrossRef]
- Yao, N.; Wang, S. Recent progress of optical tactile sensors: A review. Opt. Laser Technol. 2024, 176, 111040. [Google Scholar] [CrossRef]
- Lyu, C.; Li, P.; Zhang, J.; Du, Y. Fiber Optic Sensors in Tactile Sensing: A Review. IEEE Trans. Instrum. Meas. 2025, 74, 7001816. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ishizuka, H.; Ikeda, S.; Oshiro, O. Self-Healing Optical Tactile Sensor Using Optical Waveguide. arXiv 2024, arXiv:2411.05159. [Google Scholar] [CrossRef]
- Xu, J.; Chen, W.; Qian, H.; Wu, D.; Chen, R. ThinTact: Thin Vision-Based Tactile Sensor by Lensless Imaging. IEEE Trans. Robot. 2025, 41, 1139–1154. [Google Scholar] [CrossRef]
- Agarwal, A.; Wilson, A.; Man, T.; Adelson, E.; Gkioulekas, I.; Yuan, W. Vision-Based Tactile Sensor Design Using Physically Based Rendering. Commun. Eng. 2025, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Do, W.K.; Jurewicz, B.; Kennedy, M. DenseTact 2.0: Optical Tactile Sensor for Shape and Force Reconstruction. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 12549–12555. [Google Scholar] [CrossRef]
- Hosseinabadi, A.H.; Salcudean, S.E. Force Sensing in Robot-Assisted Keyhole Endoscopy: A Systematic Survey. Int. J. Robot. Res. 2021, 41, 136–162. [Google Scholar] [CrossRef]
- Othman, W.; Lai, Z.A.; Abril, C.; Barajas-Gamboa, J.S.; Corcelles, R.; Kroh, M.; Qasaimeh, M.A. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies. Front. Robot. AI 2022, 8, 705662. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Cao, D.; Wang, S.; Dasgupta, P.; Liu, H. Optical-Waveguide Based Tactile Sensing for Surgical Instruments of Minimally Invasive Surgery. Front. Robot. AI 2021, 8, 666199. [Google Scholar] [CrossRef]
- Ward-Cherrier, B.; Pestell, N.; Lepora, N.F. NeuroTac: A Neuromorphic Optical Tactile Sensor Applied to Texture Recognition. arXiv 2020, arXiv:2003.00467. [Google Scholar] [CrossRef]
- Li, W.; Shibata, T.; Oshima, Y.; Inoue, T.; Kawashima, N.; Okamoto, M.; Ueda, H.; Aoyagi, Y.; Dohi, T.; Ohe, H. MiniTac: An Ultra-Compact 8 mm Vision-Based Tactile Sensor for Enhanced Palpation in Robot-Assisted Minimally Invasive Surgery. IEEE Robot. Autom. Lett. 2024, 9, 11170–11177. [Google Scholar] [CrossRef]
- Al Sheikh, S.S.; Hanana, S.M.; Al-Hosany, Y.; Soudan, B. Design and Implementation of an FTIR Camera-Based Multi-Touch Display. In Proceedings of the 5th IEEE GCC Conference & Exhibition, Kuwait, Saudi Arabia, 17–19 March 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Walker, G. A Review of Technologies for Sensing Contact Location on the Surface of a Display. J. Soc. Inf. Disp. 2012, 20, 413–440. [Google Scholar] [CrossRef]
- Wattanaparinton, R.; Kitada, K.; Takemura, K. RFTIRTouch: Touch Sensing Device for Dual-Sided Transparent Plane Based on Repropagated Frustrated Total Internal Reflection. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (UIST’24), New York, NY, USA, 13–16 October 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Wattanaparinton, R.; Takemura, K. Vision-Based Tactile Sensing Using Multiple Contact Images Generated by Re-Propagated Frustrated Total Internal Reflections. In Proceedings of the IEEE SMC, Prague, Czech Republic, 9–12 October 2022; pp. 962–967. [Google Scholar] [CrossRef]
- Tompkins, C.G. Optical Methods of Imaging In-Plane and Normal Load Distributions Between Contacting Bodies. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2023. Available online: https://eprints.nottingham.ac.uk/id/eprint/73436 (accessed on 12 February 2025).
- Fan, N.X.; Xiao, R. Reducing the Latency of Touch Tracking on Ad-Hoc Surfaces. Proc. ACM Hum.-Comput. Interact. 2022, 6, 489–499. [Google Scholar] [CrossRef]
- Bacher, E.; Cartiel, S.; García-Pueyo, J.; Stopar, J.; Zore, A.; Kamnik, R.; Aulika, I.; Ogurcovs, A.; Grube, J.; Bundulis, A.; et al. OptoSkin: Novel LIDAR Touch Sensors for Detection of Touch and Pressure within Waveguides. IEEE Sens. J. 2024, 24, 33268. [Google Scholar] [CrossRef]
- Elegoo. SATURN 2. Available online: https://eu.elegoo.com/products/elegoo-saturn-2-8k-10-inches-mono-lcd-3d-printer (accessed on 2 June 2025).
- Formlabs. Form 3B+ vs. Form 2: Comparing Formlabs Dental Desktop 3D Printers. 2022. Available online: https://dental.formlabs.com/blog/form-3b-form-2-comparison/ (accessed on 2 June 2025).
- IEC 60825-1:2007; Safety of Laser Products—Part 1: Equipment Classification and Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2007.
- Foschum, F.; Bergmann, F.; Kienle, A. Precise Determination of the Optical Properties of Turbid Media Using an Optimized Integrating Sphere and Advanced Monte Carlo Simulations. Part 1: Theory. Appl. Opt. 2020, 59, 3203–3215. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, F.; Foschum, F.; Zuber, R.; Kienle, A. Precise Determination of the Optical Properties of Turbid Media Using an Optimized Integrating Sphere and Advanced Monte Carlo Simulations. Part 2: Experiments. Appl. Opt. 2020, 59, 3216–3226. [Google Scholar] [CrossRef] [PubMed]
- Oregon Medical Laser Center. MCML-Monte Carlo Modeling of Light Transport in Multi-Layered Tissues. Available online: https://omlc.org/software/mc/mcml/index.html (accessed on 2 June 2025).
- Aulika, I.; Paulsone, P.; Laizane, E.; Butikova, J.; Vembris, A. Spatial Mapping of Optical Constants and Thickness Variations in ITO Films and SiO2 Buffer Layers. Opt. Mater. X 2025, 26, 100408. [Google Scholar] [CrossRef]
- Institute of Solid State Physics, University of Latvia; Aulika, I.; Ogurcovs, A.; Kemere, M.; Bundulis, A.; Butikova, J.; Kundzins, K.; Bacher, E.; Laurenzis, M.; Schertzer, S.; et al. Optical properties of 3D printed materials and resins [Data set]. Zenodo 2025. [Google Scholar] [CrossRef]
Sample | Rd, % | μs, cm−1 | g, cm−1 | Rs, % | Re, % | Ts, % | Te, % | n |
---|---|---|---|---|---|---|---|---|
TFC4190 Type 19 Sample 1 | 4.10 | 0 * 0.6 ** | 0.99 * 0.993 ** | 4.87 | 4.92 | 84.58 | 84.40 | 1.401 |
MonoCure3D Pro Crystal Clear 2 | 6.49 | 0.2 | 0.931 | 6.96 | 7.05 | 87.88 | 88.60 | 1.483 |
TechClear 6123 Sample 1 (TechClear 1) | 7.40 | 0.8 | 0.874 | 7.32 | 7.4 | 82.23 | 82.1 | 1.537 |
Liqcreate—Clear Impact 2 | 7.00 | 1.1 | 0.911 | 7.02 | 7.05 | 82.54 | 82.50 | 1.523 |
JLC printed | 0.53 | 0.15 | 0.998 | 8.05 | 8.25 | 90.51 | 90.21 | 1.519 |
FormLabs Clear—3D-printed (FL Clear 3D) | 7.03 | 0.5 | 0.940 | 7.63 | 7.34 | 91.01 | 91.72 | 1.497 |
FormLabs Clear—Single layer (FL Clear SL) | 4.46 | 0.2 | 0.996 | 7.52 | 7.17 | 91.78 | 92.25 | 1.497 |
FormLabs Clear—Multi layer (FL Clear ML) | 1.57 | 0.1 | 0.995 | 7.51 | 7.53 | 91.04 | 91.25 | 1.497 |
FormLabs Flexible—Multi layer 1 (FL Flex ML1) | 5.55 | 0.1 | 0.934 | 7.28 | 6.96 | 92.42 | 92.80 | 1.482 |
FormLabs Flexible—Multi layer 2 (FL Flex ML2) | 5.46 | 0.1 | 0.926 | 7.11 | 6.87 | 91.40 | 91.80 | 1.482 |
Acrylic glass | 0.17 | 0.02 | 0.998 | 7.26 | 7.54 | 92.32 | 92.49 | 1.483 |
Crystalflex | 1.9 | 0.1 | 0.995 | 5.00 | 5.50 | 88.06 | 88.20 | 1.398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aulika, I.; Ogurcovs, A.; Kemere, M.; Bundulis, A.; Butikova, J.; Kundzins, K.; Bacher, E.; Laurenzis, M.; Schertzer, S.; Stopar, J.; et al. Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation. Materials 2025, 18, 3287. https://doi.org/10.3390/ma18143287
Aulika I, Ogurcovs A, Kemere M, Bundulis A, Butikova J, Kundzins K, Bacher E, Laurenzis M, Schertzer S, Stopar J, et al. Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation. Materials. 2025; 18(14):3287. https://doi.org/10.3390/ma18143287
Chicago/Turabian StyleAulika, Ilze, Andrejs Ogurcovs, Meldra Kemere, Arturs Bundulis, Jelena Butikova, Karlis Kundzins, Emmanuel Bacher, Martin Laurenzis, Stephane Schertzer, Julija Stopar, and et al. 2025. "Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation" Materials 18, no. 14: 3287. https://doi.org/10.3390/ma18143287
APA StyleAulika, I., Ogurcovs, A., Kemere, M., Bundulis, A., Butikova, J., Kundzins, K., Bacher, E., Laurenzis, M., Schertzer, S., Stopar, J., Zore, A., & Kamnik, R. (2025). Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation. Materials, 18(14), 3287. https://doi.org/10.3390/ma18143287