Research on the Effect of Oxygen Ions on the Coordination Structure and Electrochemical Behavior of Titanium Ions in NaCl-KCl Melt
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Characterization of Oxygen
3.2. Determination of the Valence State of Titanium Ions
3.3. Reduction of TiClx in Molten NaCl–KCl Under Various Titanium-Oxygen Ratios
3.4. Titanium-Oxygen Coordination Behavior
4. Conclusions
- (1)
- The molten salt underwent an LSV test after the electrolysis of TiCxOy with different ratios. The results demonstrated that for C/O ratios of 7/3, 6/4, and 5/5, there was an absence of oxygen ion infiltration into the electrolyte during the electrolysis process. In contrast, when the C/O ratios were adjusted to 4/6 or 3/7, oxygen ions were found to enter the electrolyte.
- (2)
- Investigation on the electrochemical behavior of titanium ions under different oxygen ion conditions using CV and SWV. An increase in oxygen ion content led to noticeable changes in both peak intensity and potential on the LSV curve, along with a significant negative shift in the open-circuit potential. In the NaCl-KCl-TiCl2 molten salt, trivalent titanium ions are reduced to metallic titanium through two steps: Ti(III)-Ti(II) and Ti(II)-Ti. The reduction steps of titanium ions have been decreased by adding oxide ions into the molten salt.
- (3)
- The XPS analysis in the NaCl-KCl-TiCl2 molten salt system demonstrates that the incorporation of oxygen ions gradually replaces the Ti-Cl bonds with Ti-O bonds. This substitution process results in the creation of new titanium chloro-oxygen complexes. The presence of TiOxClym− is confirmed by both electrochemical and Raman tests.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basile, F.; Chassaing, E. Electrochemical reduction of ZrCl4 in molten NaCl, CsCl and KCl-LiCl and chemical reactions coupled to the electrodeposition of zirconium. J. Appl. Electrochem. 1981, 11, 645–651. [Google Scholar] [CrossRef]
- Haarberg, G.; Rolland, W.; Sterten, Å. Electrodeposition of titanium from chloride melts. J. Appl. Electrochem. 1993, 23, 217–224. [Google Scholar] [CrossRef]
- Robin, A.; Lepinay, J.; Barbier, M. Electrolytic coating of tltanium onto iron and nickel electrodes in the molten LiF + NaF + KF eutectic. J. Electroanal. Chem. 1987, 230, 125–141. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, J.; Li, B.; Ren, D.; Chen, X.; Yu, J.; Zhang, Q. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2003619. [Google Scholar] [CrossRef]
- Chassaing, E.; Basile, F.; Lorthioir, G. Study of Ti(III) solutions in various molten alkali chlorides. I. Chemical and electrochemical investigation. J. Appl. Electrochem. 1981, 11, 187–191. [Google Scholar] [CrossRef]
- Wang, Q.; Song, J.; Hu, G.; Zhu, X.; Hou, J.; Jiao, S.; Zhu, H. The equilibrium between titanium ions and titanium metal in NaCl-KCl equimolar molten salt. Metall. Mater. Trans. B 2013, 44, 906–913. [Google Scholar] [CrossRef]
- Slim, Z.; Menke, E. Aluminum electrodeposition from chloride-rich and chloride-free organic electrolytes. J. Phys. Chem. C 2022, 126, 2365–2373. [Google Scholar] [CrossRef]
- Jiao, S.; Jiao, H.; Song, W.; Wang, M.; Tu, J. A review on liquid metals as cathodes for molten salt/oxide electrolysis. Int. J. Miner. Metall. Mater. 2020, 27, 1588–1598. [Google Scholar] [CrossRef]
- Girginov, A.; Tzvetkoff, T.; Bojinov, M. Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes. J. Appl. Electrochem. 1995, 25, 993–1003. [Google Scholar] [CrossRef]
- Song, J.; Wang, Q.; Kang, M.; Jiao, S.; Zhu, H. The equilibrium between titanium ions and metallic titanium in the molten binary mixtures of LiCl. Electrochemistry 2014, 82, 1047–1051. [Google Scholar] [CrossRef]
- Song, J.; Wang, Q.; Wu, J.; Jiao, S.; Zhu, H. The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts. Faraday Discuss. 2016, 190, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Song, J.; Zhu, H.; Jiao, S. Electrochemical behavior of titanium(ii) ion in a purified calcium chloride melt. Metall. Mater. Trans. B 2015, 46, 162–168. [Google Scholar] [CrossRef]
- Song, Y.; Jiao, S.; Hu, L.; Guo, Z. The cathodic behavior of Ti(III) ion in a NaCl-2CsCl melt. Metall. Mater. Trans. B 2016, 47, 804–810. [Google Scholar] [CrossRef]
- Clayton, F.; Mamantov, G.; Manning, D. Electrochemical studies of titanium in molten fluorides. J. Electrochem. Soc. 1973, 120, 1193. [Google Scholar] [CrossRef]
- Song, J.; Mukherjee, A. Influence of F- on the electrochemical properties of titanium ions and Al-Ti alloy electrodeposition in molten AlCl3-NaCl. RSC Adv. 2016, 6, 82049–82056. [Google Scholar] [CrossRef]
- Guang-Sen, C.; Okido, M.; Oki, T. Electrochemical studies of titanium in fluoride-chloride molten salts. J. Appl. Electrochem. 1988, 18, 80–85. [Google Scholar] [CrossRef]
- Kong, R.; Liu, S.; Lv, Z.; Li, S.; Fan, Y.; He, J.; Jiao, H.; Song, J. The coordination of titanium ions and the electrocrystallization mechanism in molten chloride-fluoride salts. J. Electrochem. Soc. 2023, 170, 082502. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Liu, C.; He, J.; Song, J. Effect of fluoride ions on coordination structure of titanium in molten NaCl-KCl. Int. J. Miner. Metall. Mater. 2023, 30, 868–876. [Google Scholar] [CrossRef]
- Kuznetsov, S. Anodic Processes during the electrowinning of niobium from chloride-fluoride melts and the influence of oxide ions on them. J. Electrochem. Soc. 2022, 169, 082520. [Google Scholar] [CrossRef]
- Maslennikova, A.; Mushnikov, P.; Dub, A.; Tkacheva, O.; Zaikov, Y.; Liu, Y.; Shi, W. Determination of the oxygen content in the LiF-NaF-KF melt. Materials 2023, 16, 4197. [Google Scholar] [CrossRef]
- Okada, K.; Suzuki, Y.; Fukunaka, Y.; Goto, T. Coordination structure of titanium ions in molten LiF-KF mixture with the addition of TiO2 and bulk titanium. J. Electrochem. Soc. 2022, 169, 122504. [Google Scholar] [CrossRef]
- Suzuki, Y.; Inoue, Y.; Yokota, M.; Goto, T. Effects of oxide ions on the electrodeposition process of silicon in molten fluorides. J. Electrochem. Soc. 2019, 166, D564–D568. [Google Scholar] [CrossRef]
- Yan, B.; Wang, J.; Yang, T.; Yan, Y.; Zhang, M.; Qiu, M.; Zhu, X. Synthesis of Ti powders with different morphologies via controlling the valence state of the titanium ion in KCl-NaCl molten salt. J. Electroanal. Chem. 2020, 876, 114496. [Google Scholar] [CrossRef]
- Bai, X.; Li, S.; He, J.; Song, J. Effect of fluoride-ion on the electrochemical behavior of tantalum ion in NaCl-KCl molten salt. J. Electrochem. Soc. 2022, 169, 082504. [Google Scholar] [CrossRef]
- Lv, C.; Jiao, H.; Li, S.; Che, Y.; Li, S.; Liu, C.; He, J.; Song, J. Liquid zinc assisted electro-extraction of molybdenum. Sep. Purif. Technol. 2021, 279, 119651. [Google Scholar] [CrossRef]
- Jiao, H.; Song, W.; Chen, H.; Wang, M.; Jiao, S.; Fang, D. Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis. J. Clean. Prod. 2020, 261, 121314. [Google Scholar] [CrossRef]
- Li, C.; Li, S.; Che, Y.; Li, J.; Shu, Y.; He, J.; Song, J. Electrochemical behavior of niobium ions in molten KCl-NaCl. J. Mater. Res. Technol. 2020, 9, 9341–9347. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Z.; Chen, S.; Wang, L.; Li, G. Electrochemical behavior of zirconium in molten NaCl-KCl-K2ZrF6 system. Rare Met. 2011, 30, 8–13. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, G.; Chen, S.; Wang, L. Electrochemistry of Hf(IV) in NaCl-KCl-NaF-K2HfF6 molten salts. Int. J. Miner. Metall. Mater. 2020, 27, 1644–1649. [Google Scholar] [CrossRef]
- Miyaoka, H.; Kuze, T.; Sano, H.; Mori, H.; Mizutani, G.; Otsuka, N.; Terano, M. Raman spectra of titanium di-, tri-, and tetra-chlorides. Int. J. Mod. Phys. B 2001, 15, 3865–3868. [Google Scholar] [CrossRef]
The Relationship Between the Molar Ratio of O2−/Ti2+ | Theoretical Mass of Na2O Added (g) | Actual Mass of Na2O Added (g) |
---|---|---|
1:1 | 0.13 | 0.14 |
2:1 | 0.26 | 0.27 |
4:1 | 0.52 | 0.53 |
6:1 | 0.78 | 0.80 |
8:1 | 1.04 | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Mao, P.; Mu, T.; Zhu, F.; Li, S. Research on the Effect of Oxygen Ions on the Coordination Structure and Electrochemical Behavior of Titanium Ions in NaCl-KCl Melt. Materials 2025, 18, 3161. https://doi.org/10.3390/ma18133161
Li S, Mao P, Mu T, Zhu F, Li S. Research on the Effect of Oxygen Ions on the Coordination Structure and Electrochemical Behavior of Titanium Ions in NaCl-KCl Melt. Materials. 2025; 18(13):3161. https://doi.org/10.3390/ma18133161
Chicago/Turabian StyleLi, Shaolong, Peizhu Mao, Tianzhu Mu, Fuxing Zhu, and Shengwei Li. 2025. "Research on the Effect of Oxygen Ions on the Coordination Structure and Electrochemical Behavior of Titanium Ions in NaCl-KCl Melt" Materials 18, no. 13: 3161. https://doi.org/10.3390/ma18133161
APA StyleLi, S., Mao, P., Mu, T., Zhu, F., & Li, S. (2025). Research on the Effect of Oxygen Ions on the Coordination Structure and Electrochemical Behavior of Titanium Ions in NaCl-KCl Melt. Materials, 18(13), 3161. https://doi.org/10.3390/ma18133161