Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials for the Manufacture of Geopolymer Concretes and Foamed Geopolymer Aggregates
2.2. Preparations of Foamed Geopolymer Aggregates
- Base material: fly ash—38 wt.%
- Mineral filler: quartz sand—58 wt.%
- Stabilizer: cement (GÓRKAL 70)—2 wt.%
- Foaming agent: 36% H2O2—2 wt.%
2.3. Preparations of Geopolymer Concretes with Lightweight Aggregates
2.4. Research Methods
2.4.1. Density Measurements
- —apparent density [kg/m3],
- m—mass of the sample [kg],
- V—geometric volume of the sample [m3].
2.4.2. Water Absorption Measurement
- W—absorbability [%],
- m0—dry sample weight [g],
- m1—weight of the sample after 48 h of soaking [g].
2.4.3. Flexural Strength Determination
- Rf—flexural strength [MPa],
- b—lateral length of the section [mm],
- Ff—maximum load [N],
- l—length between supports [mm].
2.4.4. Compressive Strength Determination
- Rc—compressive strength [MPa],
- A—sample cross-sectional area [mm2],
- Fc—maximum load [N].
2.4.5. Thermal Conductivity and Thermal Resistance Determination
2.4.6. Morphology Characterization
- Preliminary cleaning of the samples to remove loose debris and dust residues that could interfere with the analysis of surface topography.
- Gentle drying at 40 °C under controlled conditions to eliminate moisture without risking thermal degradation or chemical changes to the geopolymer structure.
- Mounting samples on specialized preparation tables using double-sided carbon strips to ensure a stable and conductive connection to the microscope holder.
2.4.7. AI-Assisted Analysis
3. Results
3.1. Physical Properties of Geopolymer Concretes with Lightweight Aggregates
3.2. Mechanical Properties of Geopolymer Concretes with Lightweight Aggregates
3.3. Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
3.4. Morphology of Geopolymer Concretes with Lightweight Aggregates
3.5. Assessment of Functional Properties for Geopolymer Concretes with Lightweight Aggregates
4. Discussion
- F.G.A. 60 exhibits the lowest density and thermal conductivity, good strength, thermal resistance, and superior insulating properties. However, it also demonstrates the highest water uptake.
- F.G.A./E.C.A./P 60 offers a reasonable compromise—it remains lightweight, provides good thermal insulation, has reasonable absorption, and its mechanical strength is only slightly lower than F.G.A. 60 while preserving thermal resistance.
- F.G.A./P 65 has a higher density, worse thermal conductivity, and lower compressive strength than F.G.A. 60 and F.G.A./E.C.A./P 60.
- REF. has the best mechanical strength and temperature resistance, but it is heavy and insulates heat very poorly.
- F.G.A. 70 and 75 offer good thermal insulation but fail tests at 800 and 1000 °C, which disqualifies them for chimney applications.
5. Conclusions
- The use of lightweight porous aggregates (foamed geopolymer, expanded clay, and perlite) enabled a reduction in the density of geopolymer composites by up to 52.5% compared to the reference material (from 1735 to 823.8 kg/m3), which is especially beneficial for designing lightweight chimney systems and prefabricated installation elements.
- The introduction of lightweight aggregates increased water absorption to a maximum of 7.3%, but all samples stayed within a safe range, ensuring the material’s durability when exposed to moisture and acidic condensates.
- The mechanical strength of materials with added lightweight aggregates was lower than that of the reference concrete (REF.: 34.27 MPa), but some compositions, such as F.G.A./E.C.A./P 60, reached over 18 MPa, which is enough for structural and assembly applications in chimney construction.
- Thanks to a significant reduction in thermal conductivity—to 0.1708 W/(m·K)—the composites demonstrated an improvement in insulating properties of over 76% compared to the base material, which helps lower heat loss and boosts the energy efficiency of the system.
- Resistance to high temperatures (800–1000 °C) showed that most mixtures maintain dimensional and structural stability, although further optimization of the proportion of lightweight aggregates may further improve thermal resistance and prevent degradation during long-term operating cycles.
- The increased porosity of the composites improves their thermal insulation, but it reduces mechanical strength, requiring further research into microstructural enhancements and possible impregnation methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef] [PubMed]
- Qaidi, S.M.; Sulaiman Atrushi, D.; Mohammed, A.S.; Unis Ahmed, H.; Faraj, R.H.; Emad, W.; Tayeh, B.A.; Mohammed Najm, H. Ultra-high-performance geopolymer concrete: A review. Constr. Build. Mater. 2022, 346, 128495. [Google Scholar] [CrossRef]
- Wong, L.S. Durability Performance of Geopolymer Concrete: A Review. Polymers 2022, 14, 868. [Google Scholar] [CrossRef]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Abd Ellatief, M.; Abadel, A.A.; Federowicz, K.; Abd Elrahman, M. Mechanical properties, high temperature resistance and microstructure of eco-friendly ultra-high performance geopolymer concrete: Role of ceramic waste addition. Construction and Build. Mater. 2023, 401, 132677. [Google Scholar] [CrossRef]
- He, R.; Dai, N.; Wang, Z. Thermal and Mechanical Properties of Geopolymers Exposed to High Temperature: A Literature Review. Adv. Civ. Eng. 2020, 2020, 7532703. [Google Scholar] [CrossRef]
- Zhong, W.; Ding, H.; Zhao, X.; Fan, L. Mechanical properties prediction of geopolymer concrete subjected to high temperature by BP neural network. Constr. Build. Mater. 2023, 409, 133780. [Google Scholar] [CrossRef]
- İlkentapar, S.; Özsoy, A. Investigation of mechanical properties, high-temperature resistance and microstructural properties of diatomite-containing geopolymer mortars. Arab. J. Geosci. 2022, 15, 502. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Zeyad, A.M.; Agwa, I.S.; Amin, M. Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Stud. Constr. Mater. 2021, 15, e00673. [Google Scholar] [CrossRef]
- Tan, J.; Cizer, Ö.; Vandevyvere, B.; De Vlieger, J.; Dan, H.; Li, J. Efflorescence mitigation in construction and demolition waste (CDW) based geopolymer. J. Build. Eng. 2022, 58, 105001. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Provis, J.L.; Reid, A. Efflorescence: A critical challenge for geopolymer applications? In Proceedings of the Concrete Institute of Australia’s Biennial National Conference (Concrete 2013): Understanding Concrete, Gold Coast, Australia, 16–18 October 2013; Dao, V., Dux, P., Eds.; Concrete Institute of Australia: Sydney, Australia, 2013. [Google Scholar]
- Zhou, S.; Zhou, S.; Zhang, J.; Tan, X.; Chen, D. Relationship between Moisture Transportation, Efflorescence and Structure Degradation in Fly Ash/Slag Geopolymer. Materials 2020, 13, 5550. [Google Scholar] [CrossRef] [PubMed]
- Santana, H.A.; Amorim Júnior, N.S.; Ribeiro, D.V.; Cilla, M.S.; Dias, C.M.R. Theoretical and Experimental Strategy for the Control and Mitigation of Efflorescence in Metakaolin-Based Geopolymer. J. Mater. Civ. Eng. 2023, 35, 04023189. [Google Scholar] [CrossRef]
- Škvára, F.; Kopecky, L.; Myskova, L.; Šmilauer, V.; Alberovská, L.; Vinšová, L. Aluminosilicate polymers—Influence of elevated temperatures, efflorescence. Ceram. – Silikáty 2009, 53, 276–282. [Google Scholar]
- Kalinowska-Wichrowska, K.; Pawluczuk, E.; Bołtryk, M.; Nietupski, A. Geopolymer Concrete with Lightweight Artificial Aggregates. Materials 2022, 15, 3012. [Google Scholar] [CrossRef] [PubMed]
- Abbas, W.; Khalil, W.; Nasser, I. Production of lightweight Geopolymer concrete using artificial local lightweight aggregate. MATEC Web Conf. 2018, 162, 02024. [Google Scholar] [CrossRef]
- Fan, L.; Wang, H.; Zhong, W. Development of lightweight aggregate geopolymer concrete with shale ceramsite. Ceram. Int. 2023, 49, 15422–15433. [Google Scholar] [CrossRef]
- Youssf, O.; Mills, J.E.; Elchalakani, M.; Alanazi, F.; Yosri, A.M. Geopolymer Concrete with Lightweight Fine Aggregate: Material Performance and Structural Application. Polymers 2023, 15, 171. [Google Scholar] [CrossRef]
- Liu, M.Y.J.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build. 2014, 72, 238–245. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, P.; Guo, J.; Zheng, Y.; Hu, S. Single and synergistic effects of nano-SiO2 and hybrid fiber on rheological property and compressive strength of geopolymer concrete. Constr. Build. Mater. 2025, 472, 140945. [Google Scholar] [CrossRef]
- Zhang, P.; Wen, Z.; Han, X.; Guo, J.; Hu, S. A state-of-the-art review on frost resistance of fiber-reinforced geopolymer composites. Sustain. Chem. Pharm. 2025, 45, 102006. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Bayagoob, K.H.; Amin, M.; Tayeh, B.A.; Mostafa, S.A.; Agwa, I.S. Effect of olive waste ash on the properties of high-strength geopolymer concrete. Struct. Concr. 2025, 26, 1206–1225. [Google Scholar] [CrossRef]
- Guo, Y.; Cai, Y.; Xie, Z.; Xiao, S.; Zhuo, K.; Cai, P.; Lin, J. Experimental investigation of GFRP bar bonding in geopolymer concrete using hinged beam tests. Eng. Struct. 2024, 322, 119036. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, C.; Gong, Y.; Wu, F.; Liu, Y.; Song, J.; Wang, F. Synthesis of geopolymer composites utilizing PVA-modified basalt fibers and foundry waste: Fundamental properties, cracking resistance and fracture toughness. Cem. Concr. Compos. 2025, 160, 106046. [Google Scholar] [CrossRef]
- Li, W.; Shumuye, E.D.; Shiying, T.; Wang, Z.; Zerfu, K. Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Stud. Constr. Mater. 2022, 16, e00894. [Google Scholar] [CrossRef]
- Pu, S.; Zhu, Z.; Song, W.; Huo, W.; Zhang, C. A eco-friendly acid fly ash geopolymer with a higher strength. Constr. Build. Mater. 2022, 335, 127450. [Google Scholar] [CrossRef]
- Parathi, S.; Nagarajan, P.; Pallikkara, S.A. Ecofriendly geopolymer concrete: A comprehensive review. Clean Technol. Environ. Policy 2021, 23, 1701–1713. [Google Scholar] [CrossRef]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- Sambucci, M.; Sibai, A.; Valente, M. Recent Advances in Geopolymer Technology. A Potential Eco-Friendly Solution in the Construction Materials Industry: A Review. J. Compos. Sci. 2021, 5, 109. [Google Scholar] [CrossRef]
- Feng, L.; Yi, S.; Zhao, S.; Zhong, Q.; Ren, F.; Liu, C.; Zhang, Y.; Wang, W.; Xie, N.; Li, Z.; et al. Recycling of Alumino-silicate-Based Solid Wastes through Alkali-Activation: Preparation, Characterization, and Challenges. Buildings 2024, 14, 226. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, Z.; Qi, X.; Wang, W.; Guo, S. Alkali-activated materials without commercial activators: A review. J. Mater. Sci. 2024, 59, 3780–3808. [Google Scholar] [CrossRef]
- Sitarz, M.; Zdeb, T.; Mróz, K.; Hager, I.; Setlak, K. Foaming and Physico-Mechanical Properties of Geopolymer Pastes Manufactured from Post-Metallurgical Recycled Slag. Materials 2024, 17, 1449. [Google Scholar] [CrossRef]
- Liefke, E. Industrial Applications of Foamed Inorganic Polymers. In Proceedings of the Geopolymere ‘99 Proceedings, International Geopolymere Conference, Saint-Quentin, France, 30 June–2 July 1999; pp. 189–200. [Google Scholar]
- Nodehi, M.; Taghvaee, V.M. Alkali-Activated Materials and Geopolymer: A Review of Common Precursors and Activators Addressing Circular Economy. Circ. Econ. Sustain. 2022, 2, 165–196. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Feng, P.; Zhang, P. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives. J. Build. Eng. 2022, 49, 104056. [Google Scholar] [CrossRef]
- Gu, F.; Xie, J.; Vuye, C.; Wu, Y.; Zhang, J. Synthesis of geopolymer using alkaline activation of building-related construction and demolition wastes. J. Clean. Prod. 2023, 420, 138335. [Google Scholar] [CrossRef]
- Villa, C.; Pecina, E.; Torres, R.; Gómez, L. Geopolymer synthesis using alkaline activation of natural zeolite. Constr. Build. Mater. 2010, 24, 2084–2090. [Google Scholar] [CrossRef]
- Danish, A.; Ozbakkaloglu, T.; Ali Mosaberpanah, M.; Salim, M.U.; Bayram, M.; Yeon, J.H.; Jafar, K. Sustainability benefits and commercialization challenges and strategies of geopolymer concrete: A review. J. Build. Eng. 2022, 58, 105005. [Google Scholar] [CrossRef]
- Peng, Y.; Zheng, D.; Pan, H.; Yang, J.; Lin, J.; Lai, H.; Wu, P.; Zhu, H. Strain hardening geopolymer composites with hybrid POM and UHMWPE fibers: Analysis of static mechanical properties, economic benefits, and environmental impact. J. Build. Eng. 2023, 76, 107315. [Google Scholar] [CrossRef]
- Samuel, R.; Puppala, A.J.; Radovic, M. Sustainability Benefits Assessment of Metakaolin-Based Geopolymer Treatment of High Plasticity Clay. Sustainability 2020, 12, 10495. [Google Scholar] [CrossRef]
- Longo, F.; Cascardi, A.; Lassandro, P.; Aiello, M.A. A New Fabric Reinforced Geopolymer Mortar (FRGM) with Mechanical and Energy Benefits. Fibers 2020, 8, 49. [Google Scholar] [CrossRef]
- Peng, X.; Shuai, Q.; Li, H.; Ding, Q.; Gu, Y.; Cheng, C.; Xu, Z. Fabrication and Fireproofing Performance of the Coal Fly Ash-Metakaolin-Based Geopolymer Foams. Materials 2020, 13, 1750. [Google Scholar] [CrossRef]
- Dalğıç, A.; Yılmazer Polat, B. The Behavior of Ceramic Fiber Geopolymer Concrete under the Effect of High Temperature. Appl. Sci. 2024, 14, 1607. [Google Scholar] [CrossRef]
- Xu, C.; Pan, W.; Zhang, P.; Zhang, Z.; Wang, Z.; Su, D.; Shao, C.; Li, Q.; Guo, Y. Characterization and performance evaluation of lightweight thermal insulation recycled concrete. Discov. Appl. Sci. 2024, 6, 282. [Google Scholar] [CrossRef]
- Jamal, A.S.; Bzeni, D.K.H.; Shi, J. Thermal and mechanical performance of lightweight geopolymer concrete with pumice aggregate. Struct. Concr. 2024, 25, 349–364. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, W.; Ye, X.; Liu, X. Mechanical Properties and Constitutive Model of Geopolymer Lightweight Aggregate Concrete. Buildings 2025, 15, 98. [Google Scholar] [CrossRef]
- Liu, W.; Ju, S. Tunable Thermal Conductivity of Sustainable Geopolymers by the Si/Al Ratio and Moisture Content: Insights from Atomistic Simulations. J. Phys. Chem. B 2024, 128, 2972–2984. [Google Scholar] [CrossRef]
- Gültekin, A. Properties of basalt fiber-reinforced lightweight geopolymer mortars produced with expanded glass aggregate. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2024, 13, 205–215. [Google Scholar] [CrossRef]
- Chung, S.; Oh, S.; Sikora, P.; Stephan, D.; Abd Elrahman, M. Development and Microstructural Characterization of Ultra-lightweight Aggregate Concrete Incorporating Different Sizes of Polypropylene Fibers. Int. J. Concr. Struct. Mater. 2024, 18, 86. [Google Scholar] [CrossRef]
- Tuncer, M.; Bideci, A.; Bideci, Ö.S.; Çomak, B.; Durmuş, G. Engineering properties and thermal conductivity of lightweight concrete with polyester-coated pumice aggregates. Sci. Eng. Compos. Mater. 2025, 32, 20250057. [Google Scholar] [CrossRef]
- Girish, M.G.; Shetty, K.K.; Nayak, G. Thermal Characteristics of Fly Ash-Slag Based Geopolymer Concrete for Sustainable Road Construction in Tropical Region. Int. J. Pavement Res. Technol. 2024. [Google Scholar] [CrossRef]
- Wu, B.; Yao, Y. Development of geopolymer-based lightweight high-strength concrete and properties at different temperatures. J. Build. Eng. 2024, 88, 109264. [Google Scholar] [CrossRef]
- Tran, N.P.; Nguyen, T.N.; Black, J.R.; Ngo, T.D. High-temperature stability of ambient-cured one-part alkali-activated materials incorporating graphene for thermal energy storage. arXiv 2024, arXiv:2402.13543. [Google Scholar] [CrossRef]
- Babaharra, O.; Choukairy, K.; Faraji, H.; Khallaki, K.; Hamdaoui, S.; Bahammou, Y. Thermal performance analysis of hollow bricks integrated phase change materials for various climate zones. Heat Transf. 2024, 53, 2148–2172. [Google Scholar] [CrossRef]
- Przybek, A.; Łach, M.; Bogucki, R.; Ciemnicka, J.; Prałat, K.; Koper, A.; Korniejenko, K.; Masłoń, A. Energy-Efficient Geo-polymer Composites Containing Phase-Change Materials—Comparison of Different Contents and Types. Materials 2024, 17, 4712. [Google Scholar] [CrossRef]
- Przybek, A.; Łach, M. Insulating Innovative Geopolymer Foams with Natural Fibers and Phase-Change Materials—A Review of Solutions and Research Results. Materials 2024, 17, 4503. [Google Scholar] [CrossRef]
- Bąk, A.; Pławecka, K.; Bazan, P.; Łach, M. Influence of the addition of phase change materials on thermal insulation pro-perties of foamed geopolymer structures based on fly ash. Energy 2023, 278, 127624. [Google Scholar] [CrossRef]
- PN-EN 206+A2; Concrete—Part 1: Requirements, Properties, Production and Conformity. Polish Committee for Standardization: Warsaw, Poland, 2021.
- PN-EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. Committee for Standardization: Warsaw, Poland, 2016.
- ASTM C1784; Standard Test Method for Using a Heat Flow Meter Apparatus for Measuring Thermal Storage Properties of Phase Change Materials and Products. International American Society for Testing of Materials: West Conshohocken, PA, USA, 2020.
- ASTM C518; Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. International American Society for Testing of Materials: West Conshohocken, PA, USA, 2021.
- ISO 8301; Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus. International Standards Organization: London, UK, 1991.
- EN 12664; Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Dry and Moist Products of Medium and Low Thermal Resistance. European Committee for Standardization: Brussels, Belgium, 2001.
- PN-EN 1457-1; Chimneys—Clay/Ceramic Flue Liners—Part 1: Flue Liners Operating Under Dry Conditions—Requirements and Test Methods. Committee for Standardization: Warsaw, Poland, 2012.
- Chen, S.; Ruan, S.; Zeng, Q.; Liu, Y.; Zhang, M.; Tian, Y.; Yan, D. Pore structure of geopolymer materials and its correlations to engineering properties: A review. Constr. Build. Mater. 2022, 328, 127064. [Google Scholar] [CrossRef]
- Steins, P.; Poulesquen, A.; Frizon, F.; Diat, O.; Jestin, J.; Causse, J.; Lambertin, D.; Rossignol, S. Effect of aging and alkali activator on the porous structure of a geopolymer. J. Appl. Crystallogr. 2014, 47, 316–324. [Google Scholar] [CrossRef]
- Yu, H.; Chen, C.; He, Y. A review on the porous geopolymer preparation for structural and functional materials applications. Int. J. Appl. Ceram. Technol. 2022, 19, 1793–1813. [Google Scholar] [CrossRef]
- Kuanyshbay, A.; Niyetbay, S.; Tashmukhanbetova, I.; Sadyrov, R.; Amangeldi, N.; Mustafa, L.; Nurakhova, A.; Rustemov, I.; Yesbolat, A. Optimized Development of High-Porosity Structural and Thermal Insulation Foam Ceramics Based on Local Natural and Technogenic Raw Materials. Ceramics 2025, 8, 35. [Google Scholar] [CrossRef]
- Li, C.; Gao, R.; Ouyang, H.; Shen, T.; Chen, Z.; Li, Y. Hierarchical porous (Ta0.2Nb0.2Ti0.2Zr0.2Hf0.2)C high-entropy ceramics prepared by a self-foaming method for thermal insulation. J. Adv. Ceram. 2024, 13, 956–966. [Google Scholar] [CrossRef]
- Posi, P.; Teerachanwit, C.; Tanutong, C.; Limkamoltip, S.; Lertnimoolchai, S.; Sata, V.; Chindaprasirt, P. Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Mater. Des. (1980–2015) 2013, 52, 580–586. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, T.; Zheng, X.; Liu, Y.; Darkwa, J.; Zhou, G. Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Constr. Build. Mater. 2020, 251, 118960. [Google Scholar] [CrossRef]
- Mahmoud, H.A.; Tawfik, T.A.; Abd El-razik, M.M.; Faried, A.S. Mechanical and acoustic absorption properties of lightweight fly ash/slag-based geopolymer concrete with various aggregates. Ceram. Int. 2023, 49, 21142–21154. [Google Scholar] [CrossRef]
- Omerašević, M.; Pavkov, V.; Rosić, M.; Egerić, M.; Nenadović, S.; Bučevac, D.; Potkonjak, N. Fabrication of Porous Anorthite Ceramic Insulation Using Solid Wastes. Materials 2024, 17, 1478. [Google Scholar] [CrossRef]
- Baino, F.; Kumar Gianchandani, P. Porous Glass for Thermal Insulation in Buildings with a Focus on Sustainable Materials and Technologies: Overview and Challenges. Ceramics 2025, 8, 28. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, H.; Lv, Y.; Chen, Y. Performance and optimization design of high-strength geopolymer cold-bonded lightweight aggregate: Effect of silica fume. Case Stud. Constr. Mater. 2023, 18, e02047. [Google Scholar] [CrossRef]
- Mermerdaş, K.; İpek, S.; Sor, N.H.; Mulapeer, E.S.; Ekmen, S. The Impact of Artificial Lightweight Aggregate on the Engineering Features of Geopolymer Mortar. Turk. J. Nat. Sci. 2020, 9, 79–90. [Google Scholar] [CrossRef]
- Xu, L.; Qian, L.; Huang, B.; Dai, J. Development of artificial one-part geopolymer lightweight aggregates by crushing technique. J. Clean. Prod. 2021, 315, 128200. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, F.; Zhang, L.; Wang, Y.; Wang, M.; Li, Y.; Wu, M.; Li, Z.; Liu, H.; Han, G. Achieving high-strength, high-porosity and relatively low-shrinkage in extrusion-based 3D printed ZrO2 ceramics by adjusting CaCO3 addition and sintering temperature. J. Alloys Compd. 2024, 1008, 176809. [Google Scholar] [CrossRef]
- Chung, Y.; Chan, S.S.L.; Yoshida, K.; Franks, G.V. Microstructure, thermal, and mechanical properties of hierarchical porous silicon carbide made by direct ink writing. Int. J. Appl. Ceram. Technol. 2025, 22, e14949. [Google Scholar] [CrossRef]
- Lu, D.; Zhuang, L.; Yang, Y.; Jia, S.; Su, L.; Zhang, P.; Qin, Y.; Niu, M.; Peng, K.; Wang, H. Strong and Tough Porous Silicon Carbide Ceramics. ACS Nano 2025, 19, 18313–18321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Zhong, W.; Fan, L. Development of a high-strength lightweight geopolymer concrete for structural and thermal insulation applications. Case Stud. Constr. Mater. 2024, 21, e03949. [Google Scholar] [CrossRef]
- Kakali, G.; Kioupis, D.; Skaropoulou, A.; Tsivilis, S. Lightweight geopolymer composites as structural elements with improved insulation capacity. MATEC Web Conf. 2018, 149, 01042. [Google Scholar] [CrossRef]
- Wang, W.; You, Q.; Wu, Z.; Cui, S.; Shen, W. Fabrication of the SiC/HfC Composite Aerogel with Ultra-Low Thermal Conductivity and Excellent Compressive Strength. Gels 2024, 10, 292. [Google Scholar] [CrossRef]
- Zhang, E.; Zhang, W.; Iv, T.; Li, J.; Dai, J.; Zhang, F.; Zhao, Y.; Yang, J.; Li, W.; Zhang, H. Insulating and Robust Ceramic Nanorod Aerogels with High-Temperature Resistance over 1400 °C. ACS Appl. Mater. Interfaces 2021, 13, 20548–20558. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, K.; Li, F.; Zhang, S. High Temperature Thermal Insulation Ceramic Aerogels Fabricated from ZrC Nanofibers Welded with Carbon Nanoparticles. ACS Appl. Nano Mater. 2024, 7, 10046–10055. [Google Scholar] [CrossRef]
- Ibrahim, W.M.W.; Kamarudin, H.; Abdullah, M.M.A.B.; Kadir, A.A.; Binhussain, M. A Review of Fly Ash-Based Geopolymer Lightweight Bricks. Appl. Mech. Mater. 2015, 754–755, 452–456. [Google Scholar] [CrossRef]
- Hu, S.G.; Wu, J.; Yang, W.; He, Y.J.; Wang, F.Z.; Ding, Q.J. Preparation and properties of geopolymer-lightweight aggregate refractory concrete. J. Cent. South Univ. Technol. 2009, 16, 914–918. [Google Scholar] [CrossRef]
Precursor | Oxide Composition (wt.%) | ||||||
---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | K2O | TiO2 | SO3 | |
Fly ash | 58.41 | 30.35 | 3.83 | 2.19 | 2.04 | 0.85 | 0.53 |
Material | D10 [μm] | D50 [μm] | D90 [μm] | Average Value [μm] | Standard Deviation [μm] |
---|---|---|---|---|---|
Fly ash | 2.44 | 12.86 | 32.23 | 16.23 | 0.04 |
Setpoint Temperatures | Measured Temperatures | Thermal Conductivity | Thermal Resistance | ||
---|---|---|---|---|---|
Mean | Delta | Mean | Delta | ||
[°C] | [K] | [°C] | [K] | [W/(m × K)] | [(m2 × K)/W] |
10.0 | 20.0 | 10.0 | 20.0 | 0.07596 | 0.3380 |
Sample ID | Fly Ash | Sand | Lightweight Aggregates | ||||
---|---|---|---|---|---|---|---|
[g] | [%] | [g] | [%] | Name of Additive | [g] | [%] | |
REF. | 3000 | 50 | 3000 | 50 | — | 0 | 0 |
F.G.A. 60 | 2000 | 19.05 | 2000 | 19.05 | foamed geopolymer aggregate | 6500 | 61.9 |
F.G.A./E.C.A./P 60 | 2000 | 17.90 | 2000 | 17.90 | foamed geopolymer aggregate | 5666 | 50.7 |
expanded clay aggregate | 1500 | 13.4 | |||||
perlite | 1 L | 0.1 | |||||
F.G.A./P 65 | 2000 | 17.70 | 2000 | 17.70 | foamed geopolymer aggregate | 7256 | 64.5 |
perlite | 1 L | 0.1 | |||||
F.G.A. 70 | 2000 | 15.65 | 2000 | 15.65 | foamed geopolymer aggregate | 8780 | 68.7 |
F.G.A. 75 | 1000 | 8.98 | 1000 | 8.98 | foamed geopolymer aggregate | 8142 | 73.06 |
Sample ID | Density [kg/m3] | Thickness [cm] | Water Absorption [%] |
---|---|---|---|
REF. | 1735.0 | 2.876 | 4.9 |
F.G.A. 60 | 823.8 | 2.799 | 7.3 |
F.G.A./E.C.A./P 60 | 1173.3 | 2.501 | 6.7 |
F.G.A./P 65 | 1314.9 | 2.514 | 6.0 |
F.G.A. 70 | 1013.8 | 2.412 | 5.9 |
F.G.A. 75 | 1200.0 | 2.895 | 6.2 |
Sample ID | Flexural Strength [MPa] | Compressive Strength [MPa] |
---|---|---|
REF. | 7.200 | 34.270 |
F.G.A. 60 | 4.001 | 18.893 |
F.G.A./E.C.A./P 60 | 4.386 | 18.069 |
F.G.A./P 65 | 4.015 | 10.703 |
F.G.A. 70 | 4.310 | 10.051 |
F.G.A. 75 | 2.994 | 15.018 |
Groups | Counter | Sum | Average | Variance |
---|---|---|---|---|
REF. | 3 | 102.81 | 34.270 | 23.91873 |
F.G.A. 60 | 3 | 56.679 | 18.893 | 11.79371 |
F.G.A./E.C.A./P 60 | 3 | 54.207 | 18.069 | 16.25855 |
F.G.A./P 65 | 3 | 32.109 | 10.703 | 0.192816 |
F.G.A. 70 | 3 | 30.153 | 10.051 | 12.67261 |
F.G.A. 75 | 3 | 45.053 | 15.018 | 0.120162 |
Source of Variance | SS | df | MS | F | Value-p | Test F |
---|---|---|---|---|---|---|
Between groups | 1172.030356 | 5 | 234.4061 | 21.65195 | 1.27 × 10−5 | 3.105875 |
Within groups | 129.9131507 | 12 | 10.8261 | |||
Total | 1301.943507 | 17 |
Sample ID | Thermal Conductivity [W/(m × K)] | Thermal Resistance [(m2 × K)/W] | Resistance to Annealing at 800 °C [/0/1] | Resistance to Annealing at 1000 °C [/0/1] |
---|---|---|---|---|
REF. | 0.7366 | 0.0683 | 1 | 1 |
F.G.A. 60 | 0.1708 | 0.1642 | 1 | 1 |
F.G.A./E.C.A./P 60 | 0.2052 | 0.1219 | 1 | 1 |
F.G.A./P 65 | 0.2851 | 0.0882 | 1 | 1 |
F.G.A. 70 | 0.1737 | 0.1388 | 0 | 0 |
F.G.A. 75 | 0.1869 | 0.1550 | 0 | 0 |
Properties of the Best Sample | F.G.A./E.C.A./P 60 |
---|---|
Density [kg/m3] | 1173.3 |
Thickness [cm] | 2.501 |
Water absorption [%] | 6.7 |
Flexural strength [MPa] | 4.386 |
Compressive strength [MPa] | 18.069 |
Thermal conductivity [W/(m × K)] | 0.2052 |
Thermal resistance [(m2 × K)/W] | 0.1219 |
Resistance to annealing at 800 °C [/0/1] | 1 |
Resistance to annealing at 1000 °C [/0/1] | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybek, A.; Romańska, P.; Korniejenko, K.; Krajniak, K.; Hebdowska-Krupa, M.; Łach, M. Thermal Properties of Geopolymer Concretes with Lightweight Aggregates. Materials 2025, 18, 3150. https://doi.org/10.3390/ma18133150
Przybek A, Romańska P, Korniejenko K, Krajniak K, Hebdowska-Krupa M, Łach M. Thermal Properties of Geopolymer Concretes with Lightweight Aggregates. Materials. 2025; 18(13):3150. https://doi.org/10.3390/ma18133150
Chicago/Turabian StylePrzybek, Agnieszka, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa, and Michał Łach. 2025. "Thermal Properties of Geopolymer Concretes with Lightweight Aggregates" Materials 18, no. 13: 3150. https://doi.org/10.3390/ma18133150
APA StylePrzybek, A., Romańska, P., Korniejenko, K., Krajniak, K., Hebdowska-Krupa, M., & Łach, M. (2025). Thermal Properties of Geopolymer Concretes with Lightweight Aggregates. Materials, 18(13), 3150. https://doi.org/10.3390/ma18133150