Spark Mapping Analysis for Segregation Partitioning in Large-Scale Super-Critical-Power Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Samples
2.3. Calibration Curve
2.4. Partition Analysis Method
- (1)
- Measuring the shape and size of steel samples and completing the excitation scanning by SMALS.
- (2)
- Setting the partition statistics gradients of round sample and naming these areas as area I, area II, area III, etc. along the center of the circle toward the outer edge.
- (3)
- Collecting the data of the analyzed area after setting the gradient and evaluating the boundary of the segregation according to the trend of the area mean concentration.
- (4)
- Evaluating the degree of segregation with the upper limit and the statistical fitting degree by the 95% criterion.
3. Results and Discussion
3.1. The Fluctuation Effect on the Different Scanning Areas
3.2. Data Collection and Analysis of Complete Samples
3.3. Application of Partition Statistics to Other Steel Samples
4. Conclusions
- (1)
- The rule of partition statistics is based on comparing the area mean content with the general mean content; the area means lower than the general mean belong to one area and the area means that are higher belong to another. The positive and negative segregation areas of the steel samples were clearly separated by the partition method. With sample A, the partition statistics method was established to determine the segregation areas, and the positive and negative segregation degree and the statistical conformity degree were examined for large samples. The distribution of elements could be seen from a macro perspective, which was more comprehensive than the analysis of small areas.
- (2)
- The partition-based statistical method was applied to assess elemental distribution in round billets and corresponding pipe rings, with concentric regions defined by radial distance from the geometric center. Billets were segmented into inner and outer zones (outer zone: 90 mm radius) while pipe rings were partitioned into dual regions (outer zone: 18 mm radius). Statistical analysis revealed consistent elemental distribution trends between both forms, demonstrating that the piercing process significantly mitigated segregation in pipe rings—evidenced by attenuated compositional fluctuations and enhanced homogeneity in finished pipes relative to initial billets.
- (3)
- Utilizing the Spark Mapping Analysis for Large Samples (SMALS) technique, the entire surface of large samples was scanned to map the elemental composition distribution of P91 steel. Analysis revealed that in areas exhibiting an average element content exceeding the overall mean for the same P91 pipe, the standard deviation of element content and segregation was significantly lower. This finding implies that element-rich regions display reduced variability in composition compared to element-poor zones. During solidification, attributable to differences in melting points, copper (Cu), a low-melting-point element, manifested an inverse diffusion trend relative to other elements in solute diffusion processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rerak, M.; Ocłoń, P. Thermal Analysis of Underground Power Cable System. J. Therm. Sci. 2017, 26, 465–471. [Google Scholar] [CrossRef]
- Pandey, C.; Mahapatra, M.M.; Kumar, P.; Saini, N. Some Studies on P91 Steel and Their Weldments. J. Alloys Compd. 2018, 743, 332–364. [Google Scholar] [CrossRef]
- Han, K.; Ding, H.; Fan, X.; Li, W.; Lv, Y.; Feng, Y. Study of the Creep Cavitation Behavior of P91 Steel under Different Stress States and Its Effect on High-Temperature Creep Properties. J. Mater. Res. Technol. 2022, 20, 47–59. [Google Scholar] [CrossRef]
- Maddi, L.; Ballal, A.R.; Peshwe, D.R.; Mathew, M.D. Influence of Normalizing and Tempering Temperatures on the Creep Properties of P92 Steel. High Temp. Mater. Process. 2020, 39, 178–188. [Google Scholar] [CrossRef]
- Ge, H.; Ren, F.; Li, J.; Hu, Q.; Xia, M.; Li, J. Modelling of Ingot Size Effects on Macrosegregation in Steel Castings. J. Mater. Process. Technol. 2018, 252, 362–369. [Google Scholar] [CrossRef]
- Zheng, P.; Luo, Y.; Wang, J.; Yang, Y.; Hu, Q.; Mao, X.; Lai, C. Improved Solution Cathode Glow Discharge Micro-Plasma Source with a Geometrically Optimized Stainless Steel Auxiliary Cathode for Optical Emission Spectrometry of Metal Elements. Microchem. J. 2022, 172, 106883. [Google Scholar] [CrossRef]
- Adya, V.C.; Sengupta, A.; Thulasidas, S.K.; Natarajan, V. Direct Determination of S and P at Trace Level in Stainless Steel by CCD-Based ICP-AES and EDXRF: A Comparative Study. At. Spectrosc. 2016, 37, 19–24. [Google Scholar] [CrossRef]
- Liu, R.; Rong, K.; Wang, Z.; Cui, M.; Deguchi, Y.; Tanaka, S.; Yan, J.; Liu, J. Sample Temperature Effect on Steel Measurement Using SP-LIBS and Collinear Long-Short DP-LIBS. ISIJ Int. 2020, 60, 1724–1731. [Google Scholar] [CrossRef]
- Quackatz, L.; Griesche, A.; Kannengiesser, T. Spatially Resolved EDS, XRF and LIBS Measurements of the Chemical Composition of Duplex Stainless Steel Welds: A Comparison of Methods. Spectrochim. Acta Part B At. Spectrosc. 2022, 193, 106439. [Google Scholar] [CrossRef]
- Kimura, K.; Kwak, K.; Nambu, S.; Koseki, T. Nondestructive Evaluation of Macro Segregation in Creep Strength Enhanced 9Cr–1Mo–V–Nb Steel. Scr. Mater. 2020, 188, 179–182. [Google Scholar] [CrossRef]
- Sheng, L.; Yuan, L.; Jia, Y.; Zhao, L.; Zhang, X.; Yu, L.; Zhang, Q.; Wang, H. Full-Scale Spark Mapping of Elements and Inclusions of a High-Speed Train Axle Billet. J. Anal. At. Spectrom. 2022, 37, 1522–1534. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, Y.; Sheng, L.; Yuan, L.; Li, J. Characterization of Segregation Degree for Large Size Metal Component and Application on High-Speed Train Wheel. Anal. Chim. Acta 2022, 1203, 339719. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, L.; Jia, Y.; Li, D.; Yang, L.; Lu, Y.; Feng, G.; Wan, W. State-of-the-Art Review of High-Throughput Statistical Spatial-Mapping Characterization Technology and Its Applications. Engineering 2020, 6, 621–636. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Ren, N.; Xia, M.; Li, J. A Review on Prediction of Casting Defects in Steel Ingots: From Macrosegregation to Multi-Defect Model. J. Iron Steel Res. Int. 2022, 29, 1901–1914. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, S.; Liu, J.; Liu, H.; Zhang, R.; Xu, H.; He, Y. Study on Micro Segregation of High Alloy Fe–Mn–C–Al Steel. Steel Res. Int. 2019, 90, 1800546. [Google Scholar] [CrossRef]
- He, Q.; Wu, H.; Meng, H.; Hu, Z.; Xie, Z. Molten Steel Level Detection by Temperature Gradients With a Neural Network. IEEE Access 2019, 7, 69456–69463. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, R.; Wang, P.; Fu, C.; Cai, N.; Ju, J. Self-Piercing Riveting of Hot Stamped Steel and Aluminum Alloy Sheets Base on Local Softening Zone. Steel Res. Int. 2021, 92, 2000535. [Google Scholar] [CrossRef]
Sample | Specification (mm) | Elemental Content (%) | |||||
---|---|---|---|---|---|---|---|
Si | Mn | Cr | Ni | Mo | Cu | ||
A | 358 × 242 × 58 | 0.27 | 0.43 | 8.35 | 0.17 | 0.89 | 0.14 |
B1 | ϕ388 | 0.30 | 0.39 | 8.54 | 0.14 | 0.93 | 0.035 |
C1 | 400 × 300 × 50 | ||||||
B2 | ϕ388 | ||||||
C2 | 400 × 300 × 50 |
Element | Spectral Lines (nm) | Content Range (%) | Calibration Curve (Rounded to Two Significant Figures) | R2 |
---|---|---|---|---|
Si | 212.41 | 0.103~1.05 | 0.994 | |
Mn | 293.30 | 0.13~1.96 | 0.993 | |
Cr | 267.71 | 7.4~24.1 | 0.992 | |
Ni | 218.49 | 0.062~1.43 | 0.997 | |
Mo | 281.61 | 0.089~1.01 | 0.991 | |
Cu | 233.01 | 0.061~0.69 | 0.999 |
Elements | General Mean Content (%) | Area | Area Mean Content (%) | DS (−) (%) | DS (+) (%) | DS (Max) (%) | Statistical Fitting Degree (%) | Specification Range (%) | Standard Deviation (%) |
---|---|---|---|---|---|---|---|---|---|
Si | 0.270 | I | 0.268 | −4.45 | 5.79 | 16.61 | 100.00 | 0.20~0.50 | 0.0080 |
II | 0.271 | −3.55 | 4.62 | 100.00 | 0.0060 | ||||
III | 0.269 | −4.06 | 5.10 | 100.00 | 0.0070 | ||||
Mn | 0.430 | I | 0.427 | −3.76 | 4.24 | 13.47 | 100.00 | 0.30~0.60 | 0.0090 |
II | 0.433 | −2.92 | 3.65 | 100.00 | 0.0080 | ||||
III | 0.427 | −3.61 | 3.65 | 100.00 | 0.0080 | ||||
Cr | 8.350 | I | 8.325 | −3.31 | 3.68 | 3.53 | 98.98 | 8.00~9.50 | 0.15 |
II | 8.381 | −2.93 | 3.18 | 99.89 | 0.13 | ||||
III | 8.309 | −3.45 | 3.39 | 98.26 | 0.15 | ||||
Ni | 0.170 | I | 0.169 | −5.27 | 6.22 | 20.47 | 100.00 | ≤0.40 | 0.0049 |
II | 0.172 | −4.89 | 5.00 | 100.00 | 0.0043 | ||||
III | 0.167 | −8.13 | 5.93 | 100.00 | 0.0057 | ||||
Mo | 0.890 | I | 0.881 | −4.16 | 4.34 | 9.70 | 95.38 | 0.85~1.05 | 0.019 |
II | 0.895 | −3.61 | 4.20 | 99.72 | 0.018 | ||||
III | 0.886 | −3.47 | 3.66 | 98.87 | 0.016 | ||||
Cu | 0.140 | I | 0.141 | −2.65 | 2.81 | 22.34 | 99.98 | ≤0.20 | 0.0031 |
II | 0.140 | −2.48 | 2.43 | 100.00 | 0.0023 | ||||
III | 0.140 | −2.34 | 2.29 | 99.98 | 0.0028 |
Element | General Mean Content (%) | Sample | Area | Mean Content (%) | DS (−) (%) | DS (+) (%) | DS (Max) (%) | Statistical Fitting Degree (%) | Specification Range (%) | Standard Deviation (%) |
---|---|---|---|---|---|---|---|---|---|---|
Si | 0.300 | B1 | I | 0.298 | −3.87 | 6.52 | 15.84 | 99.96 | 0.20~0.40 | 0.0087 |
II | 0.301 | −3.41 | 4.57 | 100.00 | 0.0062 | |||||
C1 | I | 0.298 | −8.95 | 9.59 | 100.00 | 0.014 | ||||
II | 0.302 | −9.31 | 10.90 | 100.00 | 0.015 | |||||
B2 | I | 0.302 | −3.72 | 6.32 | 100.00 | 0.0077 | ||||
II | 0.299 | −3.81 | 6.68 | 99.98 | 0.0084 | |||||
C2 | I | 0.301 | −3.62 | 3.73 | 100.00 | 0.0057 | ||||
II | 0.300 | −4.36 | 4.26 | 99.98 | 0.0074 | |||||
Mn | 0.390 | B1 | I | 0.388 | −3.77 | 4.52 | 14.07 | 100.00 | 0.30~0.50 | 0.0083 |
II | 0.391 | −3.47 | 3.89 | 100.00 | 0.0074 | |||||
C1 | I | 0.392 | −6.99 | 8.35 | 99.99 | 0.015 | ||||
II | 0.392 | −6.99 | 8.35 | 99.99 | 0.015 | |||||
B2 | I | 0.393 | −4.36 | 5.03 | 100.00 | 0.0094 | ||||
II | 0.389 | −4.42 | 5.20 | 99.99 | 0.01 | |||||
C2 | I | 0.391 | −3.78 | 4.10 | 100.00 | 0.0078 | ||||
II | 0.389 | −4.55 | 4.17 | 99.99 | 0.0086 | |||||
Cr | 8.540 | B1 | I | 8.524 | −4.65 | 5.8 | 3.50 | 99.47 | 8.00~9.50 | 0.23 |
II | 8.545 | −4.52 | 5.37 | 99.68 | 0.22 | |||||
C1 | I | 8.540 | −2.11 | 2.35 | 100.00 | 0.097 | ||||
II | 8.539 | −2.07 | 2.33 | 100.00 | 0.096 | |||||
B2 | I | 8.538 | −0.11 | 0.10 | 100.00 | 0.0047 | ||||
II | 8.541 | −0.11 | 0.10 | 100.00 | 0.0051 | |||||
C2 | I | 8.571 | −3.96 | 4.50 | 99.89 | 0.18 | ||||
II | 8.508 | −5.27 | 4.64 | 98.36 | 0.21 | |||||
Ni | 0.140 | B1 | I | 0.141 | −4.57 | 4.66 | 22.34 | 100.00 | 0~0.20 | 0.0033 |
II | 0.140 | −10.05 | 5.99 | 100.00 | 0.0053 | |||||
C1 | I | 0.140 | −3.14 | 3.18 | 100.00 | 0.0023 | ||||
II | 0.140 | −2.95 | 2.97 | 100.00 | 0.0021 | |||||
B2 | I | 0.143 | −11.34 | 12.05 | 100.00 | 0.0085 | ||||
II | 0.139 | −12.09 | 12.49 | 99.99 | 0.0088 | |||||
C2 | I | 0.141 | −7.16 | 9.37 | 100.00 | 0.0059 | ||||
II | 0.139 | −10.63 | 8.56 | 99.99 | 0.0065 | |||||
Mo | 0.930 | B1 | I | 0.917 | −3.22 | 3.82 | 9.51 | 100.00 | 0.85~1.05 | 0.017 |
II | 0.934 | −2.96 | 3.38 | 100.00 | 0.015 | |||||
C1 | I | 0.924 | −11.24 | 11.05 | 91.28 | 0.053 | ||||
II | 0.938 | −12.4 | 13.22 | 89.05 | 0.062 | |||||
B2 | I | 0.938 | −3.25 | 3.33 | 100.00 | 0.016 | ||||
II | 0.927 | −3.09 | 3.50 | 99.99 | 0.016 | |||||
C2 | I | 0.931 | −4.28 | 4.58 | 99.98 | 0.021 | ||||
II | 0.929 | −4.25 | 4.67 | 99.94 | 0.021 | |||||
Cu | 0.035 | B1 | I | 0.0352 | −1.87 | 1.72 | 41.74 | 100.00 | 0.00~0.10 | 0.00032 |
II | 0.0349 | −2.02 | 1.80 | 100.00 | 0.00034 | |||||
C1 | I | 0.0351 | −4.56 | 4.53 | 100.00 | 0.00082 | ||||
II | 0.0349 | −5.57 | 4.85 | 100.00 | 0.00092 | |||||
B2 | I | 0.0349 | −1.93 | 9.51 | 100.00 | 0.00080 | ||||
II | 0.0350 | −1.85 | 7.43 | 100.00 | 0.00078 | |||||
C2 | I | 0.0350 | −1.26 | 1.24 | 100.00 | 0.00022 | ||||
II | 0.0350 | −1.37 | 1.29 | 100.00 | 0.00024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhao, L.; Sheng, L.; Yang, J.; Yuan, L.; Yu, L.; Zhang, Q.; Wang, H.; Jia, Y. Spark Mapping Analysis for Segregation Partitioning in Large-Scale Super-Critical-Power Steel. Materials 2025, 18, 3128. https://doi.org/10.3390/ma18133128
Li B, Zhao L, Sheng L, Yang J, Yuan L, Yu L, Zhang Q, Wang H, Jia Y. Spark Mapping Analysis for Segregation Partitioning in Large-Scale Super-Critical-Power Steel. Materials. 2025; 18(13):3128. https://doi.org/10.3390/ma18133128
Chicago/Turabian StyleLi, Baibing, Lei Zhao, Liang Sheng, Jingwei Yang, Liangjing Yuan, Lei Yu, Qiaochu Zhang, Haizhou Wang, and Yunhai Jia. 2025. "Spark Mapping Analysis for Segregation Partitioning in Large-Scale Super-Critical-Power Steel" Materials 18, no. 13: 3128. https://doi.org/10.3390/ma18133128
APA StyleLi, B., Zhao, L., Sheng, L., Yang, J., Yuan, L., Yu, L., Zhang, Q., Wang, H., & Jia, Y. (2025). Spark Mapping Analysis for Segregation Partitioning in Large-Scale Super-Critical-Power Steel. Materials, 18(13), 3128. https://doi.org/10.3390/ma18133128