Enhanced Thermal Conductivity of Polytetrafluoroethylene Dielectric Composite with Fluorinated Graphite Inducing Molecular Chain Orientation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of FGi/PTFE Composites
2.3. Molecular Dynamics Simulations
2.4. Characterization
3. Results and Discussion
3.1. Structural Characterization of the Composites
3.2. The Thermal Conductivity of the Composites
3.3. The Mechanical Properties of the Composites
3.4. High-Frequency Dielectric Properties of the Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Zhou, F.; Guo, J.; Zhang, Y.; Yang, H.; Zhang, Q. Surface-modified Zn0.5Ti0.5NbO4 particles filled polytetrafluoroethylene composite with extremely low dielectric loss and stable temperature dependence. J. Adv. Ceram. 2020, 9, 726–738. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, F.; Guo, J.; Yang, H.; Tong, J.; Zhang, Q. Modified BCZN particles filled PTFE composites with high dielectric constant and low loss for microwave substrate applications. Ceram. Int. 2020, 46, 7531–7540. [Google Scholar] [CrossRef]
- Jiang, P.; Bian, J. Low dielectric loss BST/PTFE composites for microwave applications. Int. J. Appl. Ceram. Technol. 2019, 16, 152–159. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Jantunen, H. Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: A review. Int. J. Appl. Ceram. Technol. 2010, 7, 415–434. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Ferraro, A.; Beccherelli, R. Liquid-crystal high-frequency microwave technology: Materials and characterization. Adv. Mater. Technol. 2018, 4, 1800447. [Google Scholar] [CrossRef]
- Chen, H.; Li, C.; Yao, Q.; Chen, F.; Fu, Q. Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene via incorporating hexagonal boron nitride and alumina particles. J. Appl. Polym. Sci. 2021, 139, 51497. [Google Scholar] [CrossRef]
- Li, R.; Yang, X.; Li, J.; Shen, Y.; Zhang, L.; Lu, R.; Wang, C.; Zheng, X.; Chen, H.; Zhang, T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. Mater. Today Phys. 2022, 22, 100594. [Google Scholar] [CrossRef]
- Dhanumalayan, E.; Joshi, G.M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos. Hybrid Mater. 2018, 1, 247–268. [Google Scholar] [CrossRef]
- Pan, C.; Kou, K.; Zhang, Y.; Li, Z.; Wu, G. Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos. Part B Eng. 2018, 153, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Kou, K.; Ji, T.; Huang, Z.; Zhang, S.; Zhang, S.; Wu, G. Preparation of ionic liquid-coated graphene nanosheets/PTFE nanocomposite for stretchable, flexible conductor via a pre-stretch processing. Nanomaterials 2019, 10, 40. [Google Scholar] [CrossRef]
- Zimmermann-Ptacek, J.; Muggli, M.; Wildhack, S.; Hintzer, K.; Gerdes, T.; Willert-Porada, M.; Moos, R. Thermal, dielectric, and mechanical properties of h-BN-filled PTFE composites. J. Appl. Polym. Sci. 2018, 135, 46859. [Google Scholar] [CrossRef]
- Wei, H.; He, W.; Li, Q.; Yu, Y.; Xu, R.; Zhou, J.; Shen, J.; Chen, W. Glass fiber/polytetrafluoroethylene composite with low dielectric constant and thermal stability for high-frequency application. Ceram. Int. 2023, 49, 28449–28456. [Google Scholar] [CrossRef]
- Chao, M.; Guo, C.; Feng, A.; Huang, Z.; Yang, Q.; Wu, G. Improved thermal conductivity and mechanical property of PTFE reinforced with Al2O3. Nano 2019, 14, 1950064. [Google Scholar] [CrossRef]
- Pan, C.; Kou, K.; Jia, Q.; Zhang, Y.; Wang, Y.; Wu, G.; Feng, A. Fabrication and characterization of micro-nano AlN co-filled PTFE composites with enhanced thermal conductivity: A morphology-promoted synergistic effect. J. Mater. Sci. Mater. Electron. 2016, 27, 11909–11916. [Google Scholar] [CrossRef]
- Yu, Y.; Hou, D.; Zhou, J.; Shen, J.; Zhang, P.; Chen, W.; Zhou, J. Improved dispersion and interfacial interaction of SiO2@polydopamine fillers in polytetrafluoroethylene composites for reduced thermal expansion and suppressed dielectric deterioration. Ceram. Int. 2023, 49, 21492–21501. [Google Scholar] [CrossRef]
- Liu, X.; Lin, C.; Rao, Z. Thermal conductivity of straight-chain polytetrafluoroethylene: A molecular dynamics study. Int. J. Therm. Sci. 2021, 159, 106646. [Google Scholar] [CrossRef]
- Yoon, D.; Lee, H.; Kim, T.; Song, Y.; Lee, T.; Lee, J.; Hun Seol, J. Enhancing the thermal conductivity of amorphous polyimide by molecular-scale manipulation. Eur. Polym. J. 2023, 184, 111775. [Google Scholar] [CrossRef]
- Pan, X.; Debije, M.G.; Schenning, A.P.H.J. High thermal conductivity in anisotropic aligned polymeric materials. ACS Appl. Polym. Mater. 2021, 3, 578–587. [Google Scholar] [CrossRef]
- Singh, V.; Bougher, T.L.; Weathers, A.; Cai, Y.; Bi, K.; Pettes, M.T.; McMenamin, S.A.; Lv, W.; Resler, D.P.; Gattuso, T.R.; et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 2014, 9, 384–390. [Google Scholar] [CrossRef]
- Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 2010, 5, 251–255. [Google Scholar] [CrossRef]
- Lu, C.; Chiang, S.W.; Du, H.; Li, J.; Gan, L.; Zhang, X.; Chu, X.; Yao, Y.; Li, B.; Kang, F. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 2017, 115, 52–59. [Google Scholar] [CrossRef]
- Fan, M.; He, W.; Li, Q.; Zhou, J.; Shen, J.; Chen, W.; Yu, Y. PTFE crystal growth in composites: A phase-field model simulation study. Materials 2022, 15, 6286. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Li, J.; Ohzawa, Y.; Nakajima, T.; Mazej, Z.; Žemva, B. Surface structure and electrochemical characteristics of natural graphite fluorinated by ClF3. J. Fluorine Chem. 2006, 127, 1383–1389. [Google Scholar] [CrossRef]
- Gupta, V.; Nakajima, T.; Ohzawa, Y.; Žemva, B. A study on the formation mechanism of graphite fluorides by Raman spectroscopy. J. Fluorine Chem. 2003, 120, 143–150. [Google Scholar] [CrossRef]
- Delbé, K.; Thomas, P.; Himmel, D.; Mansot, J.L.; Dubois, M.; Guérin, K.; Delabarre, C.; Hamwi, A. Tribological properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere. Tribol. Lett. 2009, 37, 31–41. [Google Scholar] [CrossRef]
- Wang, P.; Zeng, C.; Shen, W.; Han, G.; Chen, Y.; Han, S.; Zhang, S.; Ji, P.; Wang, C.; Wang, H. Development of the crystal structure of polytetrafluoroethylene in the forming process during paste extrusion and the effect on fiber properties. Polymer 2025, 323, 128205. [Google Scholar] [CrossRef]
- Brown, E.N.; Dattelbaum, D.M. The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer 2005, 46, 3056–3068. [Google Scholar] [CrossRef]
- Ito, A.; Sakuragi, M.; Kimura, D.; Toda, K.; Shimatani, S.; Nitta, K.H. Structural and morphological changes at initial state under uniaxial elongation of rolled polytetrafluoroethylene. Polym. Test. 2023, 128, 108208. [Google Scholar] [CrossRef]
- Vyalikh, A.; Bulusheva, L.G.; Chekhova, G.N.; Pinakov, D.V.; Okotrub, A.V.; Scheler, U. Fluorine patterning in room-temperature fluorinated graphite determined by solid-state NMR and DFT. J. Phys. Chem. C 2013, 117, 7940–7948. [Google Scholar] [CrossRef]
- Guenoun, G.; Schmitt, N.; Roux, S.; Régnier, G. Crystalline orientation assessment in transversely isotropic semicrystalline polymer: Application to oedometric compaction of PTFE. Polym. Eng. Sci. 2020, 61, 107–114. [Google Scholar] [CrossRef]
- Tanaka, T.; Ishitobi, M. Poly(tetrafluoroethylene) is unique for orienting molecules. Chem. Lett. 2018, 47, 55–58. [Google Scholar] [CrossRef]
- Tan, Y.; Yan, X.; Tang, C.; Lu, G.; Xie, K.; Tong, J.; Meng, F. Dielectric and thermal properties of GFs/PTFE composites with hybrid fillers of Al2O3 and hBN for microwave substrate applications. J. Mater. Sci. Mater. Electron. 2021, 32, 23325–23332. [Google Scholar] [CrossRef]
- Yoshihara, S.; Sakaguchi, M.; Matsumoto, K.; Tokita, M.; Watanabe, J. Influence of molecular orientation direction on the in-plane thermal conductivity of polymer/hexagonal boron nitride composites. J. Appl. Polym. Sci. 2013, 131, 39768. [Google Scholar] [CrossRef]
- Tanimoto, M.; Ando, S. Effects of chain rigidity/flexibility of polyimides on morphological structures and thermal diffusivity of hBN-filled composites. Compos. Sci. Technol. 2014, 99, 103–108. [Google Scholar] [CrossRef]
- Kuang, T.; Zhang, M.; Lian, X.; Zhang, J.; Liu, T.; Zhang, S.; Peng, X. External flow-induced highly oriented and dense nanohybrid shish-kebabs: A strategy for achieving high performance in poly (lactic acid) composites. Compos. Commun. 2022, 29, 101042. [Google Scholar] [CrossRef]
- Xu, L.; Zhan, K.; Ding, S.; Zhu, J.; Liu, M.; Fan, W.; Duan, P.; Luo, K.; Ding, B.; Liu, B.; et al. A malleable composite dough with well-dispersed and high-content boron nitride nanosheets. ACS Nano 2023, 17, 4886–4895. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, M.; Tian, F.; Xu, L.; Wu, G. Crystal size shrinking in radiation-induced crosslinking of polytetrafluoroethylene: Synchrotron small angle X-ray scattering and scanning electron microscopy analysis. Eur. Polym. J. 2014, 59, 156–160. [Google Scholar] [CrossRef]
- Sawai, D.; Watanabe, D.; Morooka, N.; Kuroki, H.; Kanamoto, T. Superdrawing of polytetrafluoroethylene nascent powder by solid-state coextrusion. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 3369–3377. [Google Scholar] [CrossRef]
- Luo, C.; Pei, J.; Zhuo, W.; Niu, Y.; Li, G. Phase transition behavior and deformation mechanism of polytetrafluoroethylene under stretching. RSC Adv. 2021, 11, 39813–39820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Zhang, X.; Guo, S. Sandwich-layered dielectric film with intrinsically excellent adhesion, low dielectric constant, and ultralow dielectric loss for a high-frequency flexible printed circuit. Ind. Eng. Chem. Res. 2021, 60, 11749–11759. [Google Scholar] [CrossRef]
- Mohd Shukor, N.A.; Seman, N. 5G planar branch line coupler design based on the analysis of dielectric constant, loss tangent and quality factor at high frequency. Sci. Rep. 2020, 10, 16115. [Google Scholar] [CrossRef]
- Kamutzki, F.; Schneider, S.; Barowski, J.; Gurlo, A.; Hanaor, D.A.H. Silicate dielectric ceramics for millimetre wave applications. J. Eur. Ceram. Soc. 2021, 41, 3879–3894. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Shen, S.; Xu, M.; Liu, X. Low dielectric constant polymers for high speed communication network. Adv. Ind. Eng. Polym. Res. 2020, 3, 138–148. [Google Scholar] [CrossRef]
- Ndayishimiye, A.; Tsuji, K.; Wang, K.; Bang, S.H.; Randall, C.A. Sintering mechanisms and dielectric properties of cold sintered (1-x) SiO2—X PTFE composites. J. Eur. Ceram. Soc. 2019, 39, 4743–4751. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, Y.; Yan, X.; Lu, G.; Xie, K.; Tong, J.; Meng, F. Functionalized Al2O3 fillers/glass fibers cloth/PTFE composites with excellent thermal properties. J. Mater. Sci. Mater. Electron. 2021, 33, 8815–8821. [Google Scholar] [CrossRef]
- Cai, X.; Dong, X.; Lv, W.; Ji, C.; Jiang, Z.; Zhang, X.; Gao, T.; Yue, K.; Zhang, X. Synergistic enhancement of thermal conductivity for low dielectric constant boron nitride–polytetrafluoroethylene composites by adding small content of graphene nanosheets. Compos. Commun. 2020, 17, 163–169. [Google Scholar] [CrossRef]
- Dai, J.H.; Liang, F.; Zhang, R.; Lu, W.Z.; Fan, G.F. Study on modification of ZnNb2O6/PTFE microwave composites with LCP fiber. Ceram. Int. 2022, 48, 2362–2368. [Google Scholar] [CrossRef]
- Liu, F.; Jin, Y.; Li, J.; Jiang, W.; Zhao, W. Improved coefficient thermal expansion and mechanical properties of PTFE composites for high-frequency communication. Compos. Sci. Technol. 2023, 241, 110142. [Google Scholar] [CrossRef]
- He, X.; Xiao, C.; Du, H.; Wang, Y.; Ding, X.; Zheng, K.; Xue, M.; Tian, X.; Zhang, X. Significantly improved interfacial properties of silicon dioxide nanowire functionalized poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibers/polytetrafluoroethylene (PTFE) wave-transparent laminated composites. J. Mater. Sci. Technol. 2024, 183, 232–240. [Google Scholar] [CrossRef]
- Li, R.; Liu, Z.; Chen, R.; Guo, S. In-situ fabrication of polyimide microphase and its effects on the mechanical and dielectric properties of polytetrafluoroethylene composite films. Compos. Part A Appl. Sci. Manuf. 2023, 166, 107381. [Google Scholar] [CrossRef]
- Khamis, A.M.; Abbas, Z.; Azis, R.S.; Mensah, E.E.; Alhaji, I.A. Effects of recycled Fe2O3 nanofiller on the structural, thermal, mechanical, dielectric, and magnetic properties of PTFE matrix. Polymers 2021, 13, 2332. [Google Scholar] [CrossRef] [PubMed]
Filler and Content | TC (W/(m·K)) | Dielectric Constant | Dielectric Loss | Reference |
---|---|---|---|---|
30 vol% AlN | 0.84 | 4.4@100 Hz | 0.0035@100 Hz | [14] |
32 wt% Al2O3 +21 wt% GFs | 0.61 | 3.49@10 GHz | 0.0027@10 GHz | [45] |
24 wt% BNNs +1 wt% GNs | 1.41 | 4.05@1 kHz | 0.0035@1 kHz | [46] |
50 vol% ZnNb2O6 +5 vol% LCP | 0.88 | 6.46@15 GHz | 0.0075@15 GHz | [47] |
0.5 wt% FGi | 1.21 | 2.06@40 GHz | 0.0021@40 GHz | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Chen, X.; Zhou, J.; Shen, J.; Chen, W. Enhanced Thermal Conductivity of Polytetrafluoroethylene Dielectric Composite with Fluorinated Graphite Inducing Molecular Chain Orientation. Materials 2025, 18, 3010. https://doi.org/10.3390/ma18133010
Li Q, Chen X, Zhou J, Shen J, Chen W. Enhanced Thermal Conductivity of Polytetrafluoroethylene Dielectric Composite with Fluorinated Graphite Inducing Molecular Chain Orientation. Materials. 2025; 18(13):3010. https://doi.org/10.3390/ma18133010
Chicago/Turabian StyleLi, Qiangzhi, Xian Chen, Jing Zhou, Jie Shen, and Wen Chen. 2025. "Enhanced Thermal Conductivity of Polytetrafluoroethylene Dielectric Composite with Fluorinated Graphite Inducing Molecular Chain Orientation" Materials 18, no. 13: 3010. https://doi.org/10.3390/ma18133010
APA StyleLi, Q., Chen, X., Zhou, J., Shen, J., & Chen, W. (2025). Enhanced Thermal Conductivity of Polytetrafluoroethylene Dielectric Composite with Fluorinated Graphite Inducing Molecular Chain Orientation. Materials, 18(13), 3010. https://doi.org/10.3390/ma18133010