Microstructure Engineered Nanoporous Copper for Enhanced Catalytic Degradation of Organic Pollutants in Wastewater
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Nanoporous Copper
2.3. MB Degradation
2.4. Catalyst Characterization
3. Results and Discussion
3.1. Structure and Morphology
3.2. Oxidative Catalytic Reactivity
3.3. Apparent Activation Energy
3.4. Mechanisms of Dye Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.Y.; Yu, J.S.; Fujita, T.; Chen, M.W. Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 2009, 19, 1221–1226. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: What will be the next paradigm shift in nanoporous materials? Adv. Mater. 2022, 34, 2107212. [Google Scholar] [CrossRef]
- Sang, Q.; Hao, S.; Han, J.; Ding, Y. Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem 2022, 4, 100069. [Google Scholar] [CrossRef]
- Abbas, A.; Liang, Q.; Abbas, S.; Liaqat, M.; Rubab, S.; Tabish, T.A. Eco-Friendly Sustainable Synthesis of Graphene Quantum Dots from Biowaste as a Highly Selective Sensor. Nanomaterials 2022, 12, 3696. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, N.; Liu, G.; Qi, H.; Zhao, W.; Zhu, B.; Zhou, L.; Zhu, J. High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 2022, 17, 857–863. [Google Scholar] [CrossRef]
- Ying, Y.-L.; Hu, Z.-L.; Zhang, S.; Qing, Y.; Fragasso, A.; Maglia, G.; Meller, A.; Bayley, H.; Dekker, C.; Long, Y.-T. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 2022, 17, 1136–1146. [Google Scholar] [CrossRef]
- Jain, R.; Lakhnot, A.S.; Bhimani, K.; Sharma, S.; Mahajani, V.; Panchal, R.A.; Kamble, M.; Han, F.; Wang, C.; Koratkar, N. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 2022, 7, 736–746. [Google Scholar] [CrossRef]
- Karim, N.; Kyawoo, T.; Jiang, C.; Ahmed, S.; Tian, W.; Li, H.; Feng, Y. Fenton-like Degradation of Methylene Blue on Attapulgite Clay Composite by Loading of Iron–Oxide: Eco-Friendly Preparation and Its Catalytic Activity. Materials 2024, 17, 2615. [Google Scholar] [CrossRef]
- Helali, S.; Rashad, M.; Ben Mabrouk, A.; Alanazi, M.A.A.; Mustafa, M.S. Structural Analysis and Adsorption Studies of (PbO, MgO) Metal Oxide Nanocomposites for Efficient Methylene Blue Dye Removal from Water. Materials 2024, 17, 2890. [Google Scholar] [CrossRef]
- Wang, Z.; Berbille, A.; Feng, Y.; Li, S.; Zhu, L.; Tang, W.; Wang, Z.L. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 2022, 13, 130. [Google Scholar] [CrossRef]
- Ahmad, S.; Liu, L.; Zhang, S.; Tang, J. Nitrogen-doped Biochar (N-doped BC) and Iron/Nitrogen Co-doped Biochar (Fe/N co-doped BC) for Removal of Refractory Organic Pollutants. J. Hazard. Mater. 2023, 446, 130727. [Google Scholar] [CrossRef]
- Ansari, M.; Moussavi, G.; Ehrampoosh, M.H.; Giannakis, S. A systematic review of non-thermal plasma (NTP) technologies for synthetic organic pollutants (SOPs) removal from water: Recent advances in energy yield aspects as their key limiting factor. J. Water Process Eng. 2023, 51, 103371. [Google Scholar] [CrossRef]
- Zhuang, X.; Huang, X.; Li, H.; Lin, T.; Gao, Y. Viologen-Directed Silver-Thiocyanate-Based Photocatalyst for Rhodamine B Degradation in Artificial Seawater. Materials 2024, 17, 5289. [Google Scholar] [CrossRef]
- Xu, X.; Mao, C.; Song, J.; Ke, S.; Hu, Y.; Chen, W.; Pan, C. Surprising Effects of Ti and Al2O3 Coatings on Tribocatalytic Degradation of Organic Dyes by GaN Nanoparticles. Materials 2024, 17, 3487. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Tang, J.; He, G.; Pan, S. Investigation of the Photocatalytic Performance, Mechanism, and Degradation Pathways of Rhodamine B with Bi2O3 Microrods under Visible-Light Irradiation. Materials 2024, 17, 957. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Prathap, M.A.; Kore, R. Morphologically controlled synthesis of copper oxides and their catalytic applications in the synthesis of propargylamine and oxidative degradation of methylene blue. Colloids Surf. Physicochem. Eng. Asp. 2011, 392, 271–282. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J.; Abbas, A.; Li, W.; Sun, Y.; Sun, Y.; Yi, J.; Lin, X.; Qiu, G.; Wen, R. Robust Giant Tunnel Electroresistance and Negative Differential Resistance in 2D Semiconductor/α-In2Se3 Ferroelectric Tunnel Junctions. Adv. Funct. Mater. 2024, 34, 2407253. [Google Scholar] [CrossRef]
- Fernández, A.M.L.; Rehman, A.; Saleem, F.; Resul, M.F.M.G.; Abbas, A.; Ahmad, S.; Eze, V.C.; Harvey, A.P. Environment-friendly epoxidation of limonene using tungsten-based polyoxometalate catalyst. Mol. Catal. 2023, 547, 113345. [Google Scholar] [CrossRef]
- Kazmi, J.; Raza, S.R.A.; Ahmad, W.; Masood, A.; Jalil, A.; Raub, A.M.; Abbas, A.; Rafiq, M.K.S.; Mohamed, M.A. Free carrier-mediated ferromagnetism in nonmagnetic ion (Bi–Li) codoped ZnO nanowires. Phys. Chem. Chem. Phys. 2023, 25, 14206–14218. [Google Scholar] [CrossRef]
- Kute, A.D.; Gaikwad, R.P.; Warkad, I.R.; Gawande, M.B. A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chem. 2022, 24, 3502–3573. [Google Scholar] [CrossRef]
- Tsai, W.-H.; Lok, J.Y.; Chou, T.-C.; Cheng, I.-C. Evaluating diffusivity for efficient electrocatalytic conversion of carbon dioxide into multicarbon products using dealloyed hierarchically nanoporous copper. Appl. Surf. Sci. 2025, 679, 161215. [Google Scholar] [CrossRef]
- Ahmed, H.R.; Mustafa, F.S.; Aziz, K.H.H.; Hinder, S.J. Utilizing sequence transformation of selective copper metal as an efficient heterogeneous Fenton-like catalyst for the degradation of aqueous methylene blue. React. Kinet. Mech. Catal. 2024, 137, 115–132. [Google Scholar] [CrossRef]
- Jamil, M.; Akhtar, M.N.; Imran, M.; Javaid, A.; Zafar, H.K.; Sohail, M.; AlDamen, M.A.; Fitta, M.; Khanfar, M.A.; Al-Qawasmeh, R.A. Photocatalytic degradation of methylene blue dye and electrocatalytic water oxidation over copper (II) complex with mixed ligands. J. Photochem. Photobiol. A Chem. 2024, 446, 115095. [Google Scholar] [CrossRef]
- Turkten, N.; Karatas, Y.; Akpinar, Y. Catalytic reduction of dye pollutants in the presence of PANI-ES: A study on kinetics and characterization. J. Mol. Struct. 2025, 1337, 142220. [Google Scholar] [CrossRef]
- Zaheer, Z.; Bawazir, W.A.; Alwael, H.; Al-Jefri, F.M.; Salem, M. Decolorization and mineralization of methylene blue by potassium permanganate. J. Mol. Liq. 2024, 394, 123794. [Google Scholar] [CrossRef]
- Abbas, A.; Luo, Y.; Ahmad, W.; Mustaqeem, M.; Kong, L.; Chen, J.; Zhou, G.; Tabish, T.A.; Zhang, Q.; Liang, Q. Recent progress, challenges, and opportunities in 2D materials for flexible displays. Nano Today 2024, 56, 102256. [Google Scholar] [CrossRef]
- Solangi, N.H.; Abbas, A.; Mubarak, N.M.; Karri, R.R.; Aleithan, S.H.; Kazmi, J.; Ahmad, W.; Khan, K. Insight mechanism of MXene for the future generation of highly efficient energy storage device. Mater. Today Sustain. 2024, 27, 100896. [Google Scholar] [CrossRef]
- Abbas, A.; Rubab, S.; Rehman, A.; Irfan, S.; Sharif, H.M.A.; Liang, Q.; Tabish, T.A. One-step green synthesis of biomass-derived graphene quantum dots as a highly selective optical sensing probe. Mater. Today Chem. 2023, 30, 101555. [Google Scholar] [CrossRef]
- Abbas, S.; Abbas, A.; Liu, Z.; Tang, C. The two-dimensional boron nitride hierarchical nanostructures: Controllable synthesis and superhydrophobicity. Mater. Chem. Phys. 2020, 240, 122145. [Google Scholar] [CrossRef]
- Jose, A.; Mathew, T.; Fernández-Navas, N.; Querebillo, C.J. Porous Inorganic Nanomaterials: Their Evolution towards Hierarchical Porous Nanostructures. Micro 2024, 4, 229–280. [Google Scholar] [CrossRef]
- Scandura, G.; Kumari, P.; Palmisano, G.; Karanikolos, G.N.; Orwa, J.; Dumée, L.F. Nanoporous dealloyed metal materials processing and applications—A review. Ind. Eng. Chem. Res. 2023, 62, 1736–1763. [Google Scholar] [CrossRef]
- Liu, C.; Ge, M.; Pan, Z.; Han, D.; Wang, M.; Wang, S.; Ao, G. Recent progress in the fabrication of free-standing three-dimensional nanoporous metals: A review. J. Mater. Sci. Mater. Electron. 2024, 35, 1874. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z. Nanoporous metals. In Handbook of Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 779–818. [Google Scholar]
- Saji, V.S. Dealloyed nanoporous platinum alloy electrocatalysts. Int. J. Hydrogen Energy 2024, 60, 1077–1091. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Y.; Ding, Y. Nanoporous high-entropy alloys and metallic glasses: Advanced electrocatalytic materials for electrochemical water splitting. Chem. Commun. 2025, 61, 4279–4292. [Google Scholar] [CrossRef]
- Hayes, J.; Hodge, A.; Biener, J.; Hamza, A.; Sieradzki, K. Monolithic nanoporous copper by dealloying Mn–Cu. J. Mater. Res. 2006, 21, 2611–2616. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Yu, N.; Xu, C.; Geng, H. Fabrication and characterization of bulk nanoporous copper by dealloying Al–Cu alloy slices. Corros. Sci. 2015, 90, 216–222. [Google Scholar] [CrossRef]
- Li, J.; Yi, Z.-B.; Li, N.-T.; Yu, N.-N.; Geng, H.-R. Refinement of nanoporous copper by dealloying the Al–Cu alloy in NaOH solution containing sodium dodecyl sulfate. Phys. Chem. Chem. Phys. 2023, 25, 19492–19500. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Geng, H.; Zhuang, Y.; Li, P. Progress, applications, and challenges of amorphous alloys: A critical review. Inorganics 2024, 12, 232. [Google Scholar] [CrossRef]
- Dworzak, A.; Paciok, P.; Mahr, C.; Heggen, M.; Dosche, C.; Rosenauer, A.; Oezaslan, M. Tuning the morphology and chemical distribution of Ag atoms in Au rich nanoparticles using electrochemical dealloying. Nanoscale 2024, 16, 9603–9616. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Wang, Y.; Tao, W.; Hou, T.; Cai, D.; Liu, L.; Liu, C.; Jiang, K.; Lin, J. The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy. Molecules 2024, 29, 615. [Google Scholar] [CrossRef]
- Ran, F.; Hu, M.; Deng, S.; Wang, K.; Sun, W.; Peng, H.; Liu, J. Designing transition metal-based porous architectures for supercapacitor electrodes: A review. RSC Adv. 2024, 14, 11482–11512. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Peng, H.; Wang, Y.; Li, J.; Zhang, Y.; Chen, Z.; Li, K.; Tu, C.; Zhang, K.; Zhu, X. Micro/Nanobiomimetic Iron-Based Scaffold Induces Vascularized Bone Regeneration To Repair Large Segmental Bone Defect in Load-Bearing Sites. ACS Nano 2025, 19, 6840–6857. [Google Scholar] [CrossRef]
- Chen, J.; Su, S.; Duan, H.; Hou, Y.; Xu, W.; Li, X.; Jia, H. Applying Electromagnetic Wet Quenching to Realize Crystal-Phase Engineering of Metal Oxides for Enhanced Catalytic Oxidation. ACS ES&T Eng. 2025. [Google Scholar] [CrossRef]
- Benjah. Methylene Blue Ox 3D Balls—Methylene Blue 3D Structure. 2007. Available online: https://commons.wikimedia.org/wiki/File:Methylene-blue-ox-3D-balls.png (accessed on 15 May 2025).
- Giancaspro, M.; Tancredi, M.; Di Fonzo, R.P.; Lasala, P.; Milella, A.; Bianco, G.V.; Sibillano, T.; Giannini, C.; Castaldo, R.; Gentile, G. Multilevel characterization of SnO2 nanostructures toward enhanced photocatalytic activity. MRS Bull. 2025, 50, 384–397. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Tung, C.-W.; Chen, T.-L.; Hsu, C.-S.; Liao, M.-Y.; Chen, H.-C.; Chen, H.M. In situ probing the dynamic reconstruction of copper–zinc electrocatalysts for CO2 reduction. Nanoscale 2022, 14, 8944–8950. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Wang, L.-J.; Wang, J.-F.; Liao, J.; Huang, J.; Du, P.-K.; Tang, Y.-Z.; Tan, Y.-H.; Fan, X.-W. Preparation of three-dimensional nanoporous copper foil with high specific surface area. Rare Met. 2024, 43, 3430–3437. [Google Scholar] [CrossRef]
- Arnouts, S.; Choukroun, D.; Napal, I.; Tajuelo Castilla, G.; Prieto, J.; Claes, N.; Daems, N.; Nappini, S.; Magnano, E.; Santoro, G. Effective Utilization of Nanoporosity and Surface Area Guides Electrosynthesis over Soft-Landed Copper Oxide Catalyst Layers. Nano Lett. 2025, 25, 2670–2677. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, Y.; Kaushal, S.; Kumar, R. Bioinspired synthesis of copper oxide nanoparticles using aqueous extracts of Cladophora glomerata (L.) Kuetz and their potential biomedical applications. Bioprocess Biosyst. Eng. 2025, 48, 633–646. [Google Scholar] [CrossRef]
- Bayram, U.; Ozer, C.; Yilmaz, E. Comparison of Photocatalytic and Adsorption Properties of ZnS@ ZnO, CdS@ ZnO, and PbS@ ZnO Nanocomposites to Select the Best Material for the Bifunctional Removal of Methylene Blue. ACS Omega 2025, 10, 9986–10003. [Google Scholar] [CrossRef]
- Meng, X.; Wang, C.; Chae, S.; Wang, Y.; Wu, C.; Xi, S.; Catizzone, E.; Giordano, G.; Guo, H.; Mintova, S. CuZnO x Active Sites Anchored on the Silanols of Hollow Silicalite-1 Zeolite Enhance CO2 Hydrogenation to Methanol. ACS Catal. 2025, 15, 5412–5425. [Google Scholar] [CrossRef]
- Li, X.-Y.; Ou, P.; Duan, X.; Ying, L.; Meng, J.; Zhu, B.; Gao, Y. Dynamic active sites in situ formed in metal nanoparticle reshaping under reaction conditions. JACS Au 2024, 4, 1892–1900. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Yan, H.; Cheng, Y.; Ye, Y.X.; Zhu, F.; Ouyang, G. Oxygen-centered organic radicals-involved unified heterogeneous self-Fenton process for stable mineralization of micropollutants in water. Adv. Mater. 2024, 36, 2401162. [Google Scholar] [CrossRef]
- Yang, M.; He, J. Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue. J. Colloid Interface Sci. 2011, 355, 15–22. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, P.; Yang, J.; Xu, G.; Yang, H.; Shi, Z.; Hu, Q.; Dong, B.; Guo, Z. Photocatalytic degradation of organic dye and phytohormone by a Cu (II) complex powder catalyst with added H2O2. Colloids Surf. Physicochem. Eng. Asp. 2020, 603, 125147. [Google Scholar] [CrossRef]
- Sajjadi, S.; Anand, A.; Beltrán, A.M.; Dvoranová, D.; Boccaccini, A.R.; Galusková, D.; Jaška, D.; Klement, R. Investigation of catalytic activation of peroxydisulfate on cu-doped mesoporous silica-based particles (Cu-BMS) for efficient degradation of methylene blue. Catal. Commun. 2024, 186, 106833. [Google Scholar] [CrossRef]
- Kim, V.; Lee, D.W.; Noh, H.R.; Lee, J.; Kim, T.-H.; Park, J.; Kim, J.-Y.; Lim, S.H. Copper-Based Two-Dimensional Metal–Organic Frameworks for Fenton-like Photocatalytic Degradation of Methylene Blue under UV and Sunlight Irradiation. Inorg. Chem. 2024, 63, 8832–8845. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Nguyen, T.T.; Nguyen, L.T.H.; Mai, T.X.; Bui, N.D.; Chu, N.M.; Nguyen, H.Q.; Nguyen, N.T.T.; Tran, T.V. Boosting the catalytic activity of nanostructured ZnFe2O4 spinels incorporating with Cu2+ for photo-Fenton degradation under visible light. Environ. Sci. Pollut. Res. 2024, 31, 67368–67381. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, N.; Zhou, Y.; Huang, F.; He, Y.; Zhang, Y. Cu-doped waste-tire carbon as catalyst for UV/H2O2 oxidation of ofloxacin. J. Environ. Manag. 2025, 373, 123960. [Google Scholar] [CrossRef]
- Waimbo, M.; Anduwan, G.; Renagi, O.; Badhula, S.; Michael, K.; Park, J.; Velusamy, S.; Kim, Y.S. Improved charge separation through H2O2 assisted copper tungstate for enhanced photocatalytic efficiency for the degradation of organic dyes under simulated sun light. J. Photochem. Photobiol. B Biol. 2020, 204, 111781. [Google Scholar] [CrossRef]
- Abdullah, M.; John, P.; Ashiq, M.N.; Manzoor, S.; Ghori, M.I.; Nisa, M.U.; Abid, A.G.; Butt, K.Y.; Ahmed, S. Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnol. Environ. Eng. 2023, 8, 63–73. [Google Scholar] [CrossRef]
- Lyu, J.; Ge, M.; Hu, Z.; Guo, C. One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, mechanism and degradation route. Chem. Eng. J. 2020, 389, 124456. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Liao, C.A.; Wu, C.T.; Chattopadhyay, S. Enhanced reactive oxygen species mediated dye-degradation by H2O2 activation with different MoS2 nanostructures. J. Indust. Eng. Chem. 2025, 149, 740–750. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, S.; Ning, P. Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Ind. Eng. Chem. Res. 2014, 53, 643–649. [Google Scholar] [CrossRef]
- Salem, I.A.; El-Maazawi, M.S. Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere 2000, 41, 1173–1180. [Google Scholar] [CrossRef]
- Kumar, M.; Surolia, P.K.; Mishra, S.; Guru, K.; Sethia, G.; Bhatt, H.B.; Chakinala, A.G.; Prasad, G. Sustainable Sunlight and UV-Driven Photocatalytic Degradation of Methylene Blue by Employing Cellulose/GO/TiO2–Bi Composite Material. Arab. J. Sci. Eng. 2024, 50, 6429–6442. [Google Scholar] [CrossRef]
- Mousavi-Zadeh, S.; Poursalehi, R.; Yourdkhani, A. Photocatalytic activity of self-heterojunctioned intermediate phases in HCl protonated and HNO3 deconjugated g-C3N4 nanostructures. Heliyon 2024, 10, e38025. [Google Scholar] [CrossRef]
- Pakade, V.E. Macadamia biowaste-derived adsorbents for application in water treatment and gas sensing: The current status. Rapid review 2014 to 2024. Emergent Mater. 2025, 1–22. [Google Scholar] [CrossRef]
- Malekkiani, M.; Magham, A.H.J.; Ravari, F.; Dadmehr, M. Enhanced ultraviolet driven photocatalytic activity of CTS-SnO2-MWCNTs ternary nanohybrid for photodegradation of methylene blue and bacteria in aqueous solutions. Environ. Technol. Innov. 2024, 34, 103559. [Google Scholar] [CrossRef]
- Fakhar, A.; Galgo, S.J.C.; Canatoy, R.C.; Rafique, M.; Sarfraz, R.; Farooque, A.A.; Khan, M.I. Advancing modified biochar for sustainable agriculture: A comprehensive review on characterization, analysis, and soil performance. Biochar 2025, 7, 8. [Google Scholar] [CrossRef]
- Fernandes, R.J.C.; Cardoso, B.D.; Rodrigues, A.R.O.; Pires, A.; Pereira, A.M.; Araújo, J.P.; Pereira, L.; Coutinho, P.J.G. Zinc/Magnesium Ferrite Nanoparticles Functionalized with Silver for Optimized Photocatalytic Removal of Malachite Green. Materials 2024, 17, 3158. [Google Scholar] [CrossRef]
- Da Silva, E.; Sánchez-García, G.; Pérez-Calvo, A.; Fernández-Domene, R.M.; Solsona, B.; Sánchez-Tovar, R. Anodizing Tungsten Foil with Ionic Liquids for Enhanced Photoelectrochemical Applications. Materials 2024, 17, 1243. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Jaramillo-Fierro, X. Density Functional Theory Study of Methylene Blue Demethylation as a Key Step in Degradation Mediated by Reactive Oxygen Species. Int. J. Mol. Sci. 2025, 26, 1756. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Quan, Z.; Liu, Z.-S.; Huang, C.-H.; Liu, Y.-J.; Zhu, B.-Z. Molecular Mechanism for the Unprecedented Metal-Independent Hydroxyl Radical Production from Thioureas and H2O2. Environ. Sci. Technol. 2025, 59, 1487–1495. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Ragul, R.; Anitha, R.; Viswanathan, V. Exploring CoFe2O4/TiO2 NCs for High-Efficiency UV-Driven Organic Dye Degradation. J. Mater. Chem. C 2025. [Google Scholar] [CrossRef]
- Venkatraman, M.; Kadian, A.; Ganesan, A.; Dong, C.-L.; Singh, A.; Dev, K.; Selvaraj, M.; Subramanian, A.; Marappan, S. Ru-Doped CeO2 Nanoparticles as Sensing Materials for the Detection of Formaldehyde. ACS Appl. Nano Mater. 2025, 8, 4680–4693. [Google Scholar] [CrossRef]
Catalyst Material | Irradiation Light | Degradation Efficiency | Degradation Time (min) | Rate Constant (× 10−3 min−1) | Ref. |
---|---|---|---|---|---|
NPC-2 | None | 98% | 70 | 44 | This work |
NPC-1 | None | 95% | 100 | 30 | This work |
Plate-like CuO | Visible light | 97.2% | 600 | 3.7 | [55] |
CuO-MeOH | Visible light | 13% | 240 | 13 | [16] |
1D-Cu nanoparticles | UV light | 84.9% | 90 | 3.78 | [56] |
Cu-doped silica NPs | – | 93.5% | 60 | 7.7 | [57] |
Copper-based MOFs | Sunlight | 100% | 120 | 33 | [58] |
Cu0.6Zn0.4Fe2O4 | LED blue light | 99.83% | 90 | 34 | [59] |
WTC-AW-Cu600 | – | 89.3% | 90 | – | [60] |
CuWO4 NPs | Sunlight | 70% | 240 | 4.5 | [61] |
CuO/CuS/MnO2 NCs | Visible light | 98% | 160 | 22 | [62] |
CuO/Fe2O3/CuFe2O4 | – | 75.5% | 120 | – | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahra, T.; Abbas, S.; Ou, J.; Lim, T.M.; Abbas, A. Microstructure Engineered Nanoporous Copper for Enhanced Catalytic Degradation of Organic Pollutants in Wastewater. Materials 2025, 18, 2929. https://doi.org/10.3390/ma18132929
Zahra T, Abbas S, Ou J, Lim TM, Abbas A. Microstructure Engineered Nanoporous Copper for Enhanced Catalytic Degradation of Organic Pollutants in Wastewater. Materials. 2025; 18(13):2929. https://doi.org/10.3390/ma18132929
Chicago/Turabian StyleZahra, Taskeen, Saleem Abbas, Junfei Ou, Tuti Mariana Lim, and Aumber Abbas. 2025. "Microstructure Engineered Nanoporous Copper for Enhanced Catalytic Degradation of Organic Pollutants in Wastewater" Materials 18, no. 13: 2929. https://doi.org/10.3390/ma18132929
APA StyleZahra, T., Abbas, S., Ou, J., Lim, T. M., & Abbas, A. (2025). Microstructure Engineered Nanoporous Copper for Enhanced Catalytic Degradation of Organic Pollutants in Wastewater. Materials, 18(13), 2929. https://doi.org/10.3390/ma18132929