Could Tack-Curing Influence Margin Continuity and Conversion Degree of a Universal Dual-Curing Cement?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection and Preparation
- G1: After removing gross excesses with a fine micro-brush (Microbrush® Applicators, Young Innovations Europe, Heidelberg, Germany), 1 min of setting time, light-curing 20 s per buccal, oral, and occlusal sides (total 60 s).
- G2: tack-curing 5 s per side (total 10 s) according to literature and up to reaching a rubbery state [20]. Then, excesses were removed with a new titanium scaler in order to simulate the clinical situation, 1 min of setting time, light-curing 20 s per side (total 60 s).
2.2. Micro-Computed Tomography (Micro-CT) Analysis
- External gap (EG): perpendicular distance between the external point of the restoration margin and the tooth;
- Internal gap (IG): perpendicular distance between the tooth surface and the crown surface measured in the internal area (0.5 mm from the external point of the tooth margin);
- Absolute discrepancy (AD): distance between the external point of the tooth margin and the external point of the crown margin.
2.3. Raman Spectroscopy Evaluation
2.4. Statistical Analysis
3. Results
3.1. Marginal Adaptation by Micro-CT
3.2. Degree of Conversion by Raman Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DC | Degree of Conversion |
GC | Glass–Ceramic |
RS | Raman Spectroscopy |
CEJ | Cement–Enamel Junction |
CAD | Computer-Assisted Design |
References
- Es Sebar, L.; Angelini, E.; Baldi, A.; Comba, A.; Parvis, M.; Grassini, S. Nanoindentation and Raman spectroscopy measurements on dual-cure luting cement for dental conservative restoration. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar]
- Grassini, S.; Es Sebar, L.; Baldi, A.; Comba, A.; Angelini, E.; Berutti, E. Measurements for restorative dentistry: Shrinkage and conversion degree of bulk-fill composites. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar]
- Nakamura, S.; Yoshida, K.; Kamada, K.; Atsuta, M. Bonding between resin luting cement and glass infiltrated alumina-reinforced ceramics with silane coupling agent. J. Oral Rehabil. 2004, 31, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Contrepois, M.; Soenen, A.; Bartala, M.; Laviole, O. Marginal adaptation of ceramic crowns: A systematic review. J. Prosthet. Dent. 2013, 110, 447–454. [Google Scholar] [CrossRef]
- Leung, G.K.H.; Wong, A.W.Y.; Chu, C.H.; Yu, O.Y. Update on dental luting materials. Dent. J. 2022, 10, 208. [Google Scholar] [CrossRef]
- Alovisi, M.; Scotti, N.; Comba, A.; Manzon, E.; Farina, E.; Pasqualini, D.; Tempesta, R.M.; Breschi, L.; Cadenaro, M. Influence of polymerization time on properties of dual-curing cements in combination with high translucency monolithic zirconia. J. Prosthodont. Res. 2018, 62, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Comba, A.; Cadenaro, M.; Fontanive, L.; Breschi, L.; Monaco, C.; Scotti, R. Effect of lithium disilicate veneers of different thickness on the degree of conversion and microhardness of a light-curing and a dual-curing cement. Int. J. Prosthodont. 2016, 29, 384–388. [Google Scholar] [CrossRef]
- Serino, G.; Comba, A.; Baldi, A.; Carossa, M.; Baldissara, P.; Bignardi, C.; Audenino, A.; Torres, C.G.R.; Scotti, N. Could light-curing time, post-space region and cyclic fatigue affect the nanomechanical behavior of a dual-curing cement for fiber post luting? J. Mech. Behav. Biomed. Mater. 2022, 125, 104886. [Google Scholar] [CrossRef]
- Melo Freire, C.; Borges, G.; Caldas, D.; Santos, R.; Ignácio, S.; Mazur, R. Marginal adaptation and quality of interfaces in lithium disilicate crowns—Influence of manufacturing and cementation techniques. Oper. Dent. 2017, 42, 185–195. [Google Scholar] [CrossRef]
- Yang, B.; Huang, Q.; Holmes, B.; Guo, J.; Li, Y.; Heo, Y.; Chew, H.P.; Wang, Y.; Fok, A. Influence of curing modes on the degree of conversion and mechanical parameters of dual-cured luting agents. J. Prosthodont. Res. 2020, 64, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.S.; Windeler, A.S. An investigation of dental luting cement solubility as a function of the marginal gap. J. Prosthet. Dent. 1991, 65, 436–442. [Google Scholar] [CrossRef]
- Rossetti, P.H.O.; Valle, A.L.d.; Carvalho, R.M.d.; Goes, M.F.D.; Pegoraro, L.F. Correlation between margin fit and microleakage in complete crowns cemented with three luting agents. J. Appl. Oral Sci. 2008, 16, 64–69. [Google Scholar] [CrossRef]
- Padbury, A., Jr.; Eber, R.; Wang, H.L. Interactions between the gingiva and the margin of restorations. J. Clin. Periodontol. 2003, 30, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, S.H.; Lee, B.N.; Hwang, Y.C.; Hwang, I.N.; Oh, W.M.; Ferracane, J.L.; Chang, H.S. Effect of tack cure on polymerization shrinkage of resin-based luting cements. Oper. Dent. 2020, 45, E196–E206. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Suh, B.I.; Gleave, C.; Choi, W.J.; Hyun, J.; Nam, J. Effects of light-, self-, and tack-curing on degree of conversion and physical strength of dual-cure resin cements. Am. J. Dent. 2016, 29, 67–70. [Google Scholar]
- Ikemoto, S.; Komagata, Y.; Yoshii, S.; Masaki, C.; Hosokawa, R.; Ikeda, H. Impact of CAD/CAM Material Thickness and Translucency on the Polymerization of Dual-Cure Resin Cement in Endocrowns. Polymers 2024, 16, 661. [Google Scholar] [CrossRef] [PubMed]
- Stegall, D.; Tantbirojn, D.; Perdigão, J.; Versluis, A. Does tack curing luting cements affect the final cure? J. Adhes. Dent. 2017, 19, 239. [Google Scholar]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Richter, W.A.; Ueno, H. Relationship of crown margin placement to gingival inflammation. J. Prosthet. Dent. 1973, 30, 156–161. [Google Scholar] [CrossRef]
- Felton, D.; Kanoy, B.; Bayne, S.A.; Wirthman, G. Effect of in vivo crown margin discrepancies on periodontal health. J. Prosthet. Dent. 1991, 65, 357–364. [Google Scholar] [CrossRef]
- Saltzberg, D.; Ceravolo, F.; Holstein, F.; Groom, G.; Gottsegen, R. Scanning electron microscope study of the junction between restorations and gingival cavosurface margins. J. Prosthet. Dent. 1976, 36, 517–522. [Google Scholar] [CrossRef]
- Zinelis, S. Micro-CT Evaluation of the Marginal Fit of Different In-Ceram Alumina Copings; Department of Prosthodontics, School of Dentistry, National and Kapodistrian University: Athens, Greece, 2009. [Google Scholar]
- Manso, A.P.; Carvalho, R.M. Dental cements for luting and bonding restorations: Self-adhesive resin cements. Dent. Clin. 2017, 61, 821–834. [Google Scholar]
- Madrigal, E.L.; Tichy, A.; Hosaka, K.; Ikeda, M.; Nakajima, M.; Tagami, J. The effect of curing mode of dual-cure resin cements on bonding performance of universal adhesives to enamel, dentin and various restorative materials. Dent. Mater. J. 2021, 40, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Son, S.A.; Kim, B.N.; Kim, J.H.; Seo, D.G.; Park, J.K. Influence of dentin surface roughness, drying time, and primer application on self-adhesive composite-cement bond strength. J. Adhes. Dent. 2022, 24, b2916387. [Google Scholar] [PubMed]
- Alegría-Acevedo, L.; Gutiérrez, M.; Perdigão, J.; Núñez, A.; Méndez-Bauer, L.; Dávila-Sanchez, A.; Reis, A.; Loguercio, A. In vitro performance of different universal adhesive systems on several CAD/CAM restorative materials after thermal aging. Oper. Dent. 2022, 47, 107–120. [Google Scholar] [CrossRef]
- de Carvalho, M.A.; Lazari-Carvalho, P.C.; Polonial, I.F.; de Souza, J.B.; Magne, P. Significance of immediate dentin sealing and flowable resin coating reinforcement for unfilled/lightly filled adhesive systems. J. Esthet. Restor. Dent. 2021, 33, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, E.; Peutzfeldt, A. Surface energy characteristics of adhesive monomers. Dent. Mater. 1998, 14, 21–28. [Google Scholar] [CrossRef]
- Baldi, A.; Comba, A.; Michelotto Tempesta, R.; Carossa, M.; Pereira, G.K.R.; Valandro, L.F.; Paolone, G.; Vichi, A.; Goracci, C.; Scotti, N. External marginal gap variation and residual fracture resistance of composite and lithium-silicate CAD/CAM overlays after cyclic fatigue over endodontically-treated molars. Polymers 2021, 13, 3002. [Google Scholar] [CrossRef]
- El-Araby, A.M.; Talic, Y.F. The effect of thermocycling on the adhesion of self-etching adhesives on dental enamel and dentin. J. Contemp. Dent. Pract. 2007, 8, 17–24. [Google Scholar] [CrossRef]
- Oliveira, J.C.d.; Aiello, G.; Mendes, B.; Urban, V.M.; Campanha, N.H.; Jorge, J.H. Effect of storage in water and thermocycling on hardness and roughness of resin materials for temporary restorations. Mater. Res. 2010, 13, 355–359. [Google Scholar] [CrossRef]
- Mously, H.A.; Finkelman, M.; Zandparsa, R.; Hirayama, H. Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heat-press technique. J. Prosthet. Dent. 2014, 112, 249–256. [Google Scholar] [CrossRef]
- de Paula Silveira, A.C.; Chaves, S.B.; Hilgert, L.A.; Ribeiro, A.P.D. Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras. J. Prosthet. Dent. 2017, 117, 386–392. [Google Scholar] [CrossRef]
- Demir, N.; Ozturk, A.N.; Malkoc, M.A. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur. J. Dent. 2014, 8, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Martyna, A.; Menżyk, A.; Damin, A.; Michalska, A.; Martra, G.; Alladio, E.; Zadora, G. Improving discrimination of Raman spectra by optimising preprocessing strategies on the basis of the ability to refine the relationship between variance components. Chemom. Intell. Lab. Syst. 2020, 202, 104029. [Google Scholar] [CrossRef]
- Sulca, N.M.; Lungu, A.; Garea, S.A.; Iovu, H. Monitoring the synthesis of new polymer nanocomposites based on different polyhedral oligomeric silsesquioxanes using Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 1634–1640. [Google Scholar] [CrossRef]
- Zeiger, D.N.; Sun, J.; Schumacher, G.E.; Lin-Gibson, S. Evaluation of dental composite shrinkage and leakage in extracted teeth using X-ray microcomputed tomography. Dent. Mater. 2009, 25, 1213–1220. [Google Scholar] [CrossRef]
- Baldi, A.; Comba, A.; Alovisi, M.; Tempesta, R.M.; Pasqualini, D.; Berutti, E. Application of a 3D segmentation software to micro-CT imaging of dental materials interfaces. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar]
- Akbar, J.H.; Petrie, C.S.; Walker, M.P.; Williams, K.; Eick, J.D. Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J. Prosthodont. Implant Esthet. Reconstr. Dent. 2006, 15, 155–163. [Google Scholar] [CrossRef]
- Tauböck, T.T.; Oberlin, H.; Buchalla, W.; Roos, M.; Attin, T. Comparing the effectiveness of self-curing and light curing in polymerization of dual-cured core buildup materials. J. Am. Dent. Assoc. 2011, 142, 950–956. [Google Scholar] [CrossRef]
- Windle, C.B.; Hill, A.E.; Tantbirojn, D.; Versluis, A. Dual-cure dental composites: Can light curing interfere with conversion? J. Mech. Behav. Biomed. Mater. 2022, 132, 105289. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Rossi, T.; Comba, A.; Monticone, L.; Paolone, G.; Sannino, I.; Vichi, A.; Goracci, C.; Scotti, N. Three-Dimensional Internal Voids and Marginal Adaptation in Deep Margin Elevation Technique: Efficiency of Highly Filled Flowable Composites. J. Adhes. Dent. 2024, 26, b5759489. [Google Scholar]
- Ottoni, R.; Marocho, S.M.S.; Griggs, J.A.; Borba, M. CAD/CAM versus 3D-printing/pressed lithium disilicate monolithic crowns: Adaptation and fatigue behavior. J. Dent. 2022, 123, 104181. [Google Scholar] [CrossRef]
- Ekici, Z.; Kılıçarslan, M.A.; Bilecenoğlu, B.; Ocak, M. Micro-CT Evaluation of the Marginal and Internal Fit of Crown and Inlay Restorations Fabricated Via Different Digital Scanners belonging to the Same CAD-CAM System. Int. J. Prosthodont. 2021, 34, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Att, W.; Komine, F.; Gerds, T.; Strub, J.R. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J. Prosthet. Dent. 2009, 101, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Suárez, M.J.; Villaumbrosia, D.; González, P.; Pradíes, G.; Lozano, J.F. Comparison of the marginal fit of Procera AllCeram crowns with two finish lines. Int. J. Prosthodont. 2003, 16, 229. [Google Scholar]
- Khan, A.S.; Khalid, H.; Sarfraz, Z.; Khan, M.; Iqbal, J.; Muhammad, N.; Fareed, M.A.; Rehman, I.U. Vibrational spectroscopy of selective dental restorative materials. Appl. Spectrosc. Rev. 2017, 52, 507–540. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Rehman, G.U.; Basavarajappa, S.; Al Khuraif, A.A.; Durgesh, B.; Khan, A.S.; Rehman, I.u. Applications of Raman spectroscopy in dentistry: Analysis of tooth structure. Appl. Spectrosc. Rev. 2015, 50, 332–350. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Leniart, A.; Lapinska, B.; Skrzypek, S.; Lukomska-Szymanska, M. Selected spectroscopic techniques for surface analysis of dental materials: A narrative review. Materials 2021, 14, 2624. [Google Scholar] [CrossRef]
- Inokoshi, M.; Pongprueksa, P.; De Munck, J.; Vanmeensel, K.; Minakuchi, S.; Vleugels, J.; Naert, I.; Van Meerbeek, B. Influence of Light Irradiation Through Zirconia on the Degree of Conversion of Composite Cements. J. Adhes. Dent. 2016, 18, 161. [Google Scholar]
- David-Perez, M.; Ramirez-Suarez, J.P.; Latorre-Correa, F.; Agudelo-Suarez, A.A. Degree of conversion of resin-cements (light-cured/dual-cured) under different thicknesses of vitreous ceramics: Systematic review. J. Prosthodont. Res. 2022, 66, 385–394. [Google Scholar] [CrossRef]
- Carek, A.; Dukaric, K.; Miler, H.; Marovic, D.; Tarle, Z.; Par, M. Post-cure development of the degree of conversion and mechanical properties of dual-curing resin cements. Polymers 2022, 14, 3649. [Google Scholar] [CrossRef]
- De Souza, G.; Braga, R.R.; Cesar, P.F.; Lopes, G.C. Correlation between clinical performance and degree of conversion of resin cements: A literature review. J. Appl. Oral Sci. 2015, 23, 358–368. [Google Scholar] [CrossRef]
- Par, M.; Gamulin, O.; Marovic, D.; Klaric, E.; Tarle, Z. Effect of temperature on post-cure polymerization of bulk-fill composites. J. Dent. 2014, 42, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Dickens, S.H.; Stansbury, J.; Choi, K.; Floyd, C. Photopolymerization kinetics of methacrylate dental resins. Macromolecules 2003, 36, 6043–6053. [Google Scholar] [CrossRef]
- Lapas-Barisic, M.; Gamulin, O.; Panduric, V.; Spanovic, N.; Tarle, Z. Dugoročna naknadna polimerizacija dvaju „bulk-fill” kompozita. Acta Stomatol. Croat. Int. J. Oral Sci. Dent. Med. 2016, 50, 292–300. [Google Scholar]
- Schroeder, W.F.; Vallo, C.I. Effect of different photoinitiator systems on conversion profiles of a model unfilled light-cured resin. Dent. Mater. 2007, 23, 1313–1321. [Google Scholar] [CrossRef]
- Par, M.; Spanovic, N.; Tauböck, T.T.; Attin, T.; Tarle, Z. Degree of conversion of experimental resin composites containing bioactive glass 45S5: The effect of post-cure heating. Sci. Rep. 2019, 9, 17245. [Google Scholar] [CrossRef]
Material | Manufacturer | Composition |
---|---|---|
Universal dual-curing cement (G-Cem One) | GC, Tokyo, Japan | Paste A: Fluoroaluminosilicate glass, urethane dimethacrylate (UDMA), dimethacrylate, initiator, stabilizer, pigment, silicon dioxide, 10-methacryloyloxydecyl dihydrogenphosphate (10-MDP). |
Paste B: SiO2, trimethoxysilane, UDMA, 2-hydroxy-1,3-dimethacryloxypropane, 10-MDP, 6-tert-butyl-2,4-xylenol, 2,6-di-tert-butyl-p-cresol, ethylenediaminetetraacetate (EDTA) disodium salt dehydrate, vanadyl acetylacetonate, 2,4,6-Trimethylbenzoyldiphenylphosphine oxide (TPO), ascorbic acid, camphoroquinone, Mg. | ||
Dedicated primer (G-Cem One Primer) | GC, Tokyo, Japan | Ethanol, MDP 4-methacryloxyethyl trimellitic anhydride (4-META), 2-hydroxy-1,3-dimethoxypropane, vanadyl acetylacetonate, 2,6-di-tert-butyl-p-cresol. |
Reinforced lithium silicate (Celtra Duo) | Dentsply Sirona, NC, USA | Lithium silicate with 10% ZrO2. |
Group | External Gap (µm) | Internal Gap (µm) | Absolute Discrepancy (µm) | |||
---|---|---|---|---|---|---|
Baseline | After Aging | Baseline | After Aging | Baseline | After Aging | |
G1 | 87.79 ± 40.86 | 94.22 ± 41.57 | 61.07 ± 26.80 | 65.88 ± 29.50 | 92.94 ± 35.41 | 100.76 ± 46.16 |
G2 | 108.73 ± 38.37 | 115.74 ± 37.05 | 68.37 ± 21.55 | 70.27 ± 21.43 | 117.92 ± 45.93 | 128.21 ± 42.73 |
Statistic | G1 BT | G1 PT | G2 BT | G2 PT |
---|---|---|---|---|
Minimum | 76.68 | 84.23 | 77.63 | 79.65 |
Maximum | 87.00 | 89.52 | 87.38 | 86.61 |
Median | 82.05 | 87.46 | 83.96 | 84.91 |
Mean | 81.83 | 87.06 | 83.31 | 84.22 |
Std | 2.82 | 1.86 | 2.77 | 2.23 |
25th percentile | 79.58 | 86.02 | 82.03 | 83.55 |
75th percentile | 84.09 | 88.29 | 84.96 | 85.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Es Sebar, L.; Baldi, A.; Comba, A.; Sannino, I.; Iannucci, L.; Grassini, S.; Shokuhfar, T.; Scotti, N. Could Tack-Curing Influence Margin Continuity and Conversion Degree of a Universal Dual-Curing Cement? Materials 2025, 18, 2920. https://doi.org/10.3390/ma18122920
Es Sebar L, Baldi A, Comba A, Sannino I, Iannucci L, Grassini S, Shokuhfar T, Scotti N. Could Tack-Curing Influence Margin Continuity and Conversion Degree of a Universal Dual-Curing Cement? Materials. 2025; 18(12):2920. https://doi.org/10.3390/ma18122920
Chicago/Turabian StyleEs Sebar, Leila, Andrea Baldi, Allegra Comba, Isabella Sannino, Leonardo Iannucci, Sabrina Grassini, Tolou Shokuhfar, and Nicola Scotti. 2025. "Could Tack-Curing Influence Margin Continuity and Conversion Degree of a Universal Dual-Curing Cement?" Materials 18, no. 12: 2920. https://doi.org/10.3390/ma18122920
APA StyleEs Sebar, L., Baldi, A., Comba, A., Sannino, I., Iannucci, L., Grassini, S., Shokuhfar, T., & Scotti, N. (2025). Could Tack-Curing Influence Margin Continuity and Conversion Degree of a Universal Dual-Curing Cement? Materials, 18(12), 2920. https://doi.org/10.3390/ma18122920