Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goetz, W.; Papageorgiou, S.N. Molecular, cellular and pharmaceutical aspects of synthetic hydroxyapatite bone substitutes for oral and maxillofacial grafting. Curr. Pharmac. Biotechnol. 2017, 18, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Kudoh, K.; Fukuda, N.; Kasugai, S.; Tachikawa, N.; Koyano, K.; Matsushita, Y.; Ogino, Y.; Ishikawa, K.; Miyamoto, Y. Maxillary Sinus Floor Augmentation Using Low-Crystalline Carbonate Apatite Granules with Simultaneous Implant Installation: First-in-Human Clinical Trial. J. Oral Maxillofac. Surg. 2019, 77, 985-e1. [Google Scholar] [CrossRef] [PubMed]
- Duta, L.; Grumezescu, V. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. Materials 2024, 17, 640. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Kareiva, A. Sol-gel synthesis of calcium phosphate-based coatings—A review. Chemija 2020, 31, 25–41. [Google Scholar] [CrossRef]
- Gani, M.A.; Lee, G.; Ardianto, C.; Rantam, F.A.; Lestari, M.L.A.D.; Addimaysqi, R.; Adnyana, I.K.; Lee, K.; Khotib, J. Comparative study of bovine and synthetic hydroxyapatite in micro-and nanosized on osteoblasts action and bone growth. PLoS ONE 2025, 20, e0311652. [Google Scholar] [CrossRef]
- Lukaviciute, L.; Lukowiak, A.; Stankeviciute, Z.; Junka, A.; Mortimer, M.; Zarkov, A.; Yang, J.-C.; Ganceviciene, R.; Kareiva, A. Cytocompatible and antibacterial Fe-, Cu- and Zn-substituted calcium hydroxyapatite materials for skin applications. Ceram. Int. 2025, 51, 11286–11296. [Google Scholar] [CrossRef]
- de Andrade, R.; Paim, T.C.; Bertaco, I.; Naasani, L.S.; Buchner, S.; Kovarik, T.; Hajek, J.; Wink, M.R. Hierarchically porous bioceramics based on geopolymer-hydroxyapatite composite as a novel biomaterial: Structure, mechanical properties and biocompatibility evaluation. Appl. Mater. Today 2023, 33, 101875. [Google Scholar] [CrossRef]
- Montesissa, M.; Sassoni, E.; Boi, M.; Borciani, G.; Boanini, E.; Graziani, G. Synthetic or Natural (Bio-Based) Hydroxyapatite? A Systematic Comparison between Biomimetic Nanostructured Coatings Produced by Ionized Jet Deposition. Nanomaterials 2024, 14, 1332. [Google Scholar] [CrossRef]
- Ishikawa, K.; Garskaite, E.; Kareiva, A. Sol-gel synthesis of calcium phosphate-based biomaterials—A review of environmentally benign, simple and effective synthesis routes. J. Sol-Gel Sci. Technol. 2020, 94, 551–572. [Google Scholar] [CrossRef]
- Ahmed, L.O.; Omer, R.A. Hydroxyapatite biomaterials: A comprehensive review of their properties, structures, clinical applications, and producing techniques. Rev. Inorg. Chem. 2024, 44, 599–618. [Google Scholar] [CrossRef]
- Santos, M.H.; de Oliveira, M.; de Freitas Souza, L.P.; Mansur, H.S.; Vasconcelos, W.L. Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater. Res. 2004, 7, 625–630. [Google Scholar] [CrossRef]
- Mobasherpour, I.; Heshajin, M.S.; Kazemzadeh, A.; Zakeri, M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Compd. 2007, 430, 330–333. [Google Scholar] [CrossRef]
- Sokolova, M.; Putnins, A.; Kreicbergs, I.; Locs, J. Scale-Up of Wet Precipitation Calcium Phosphate Synthesis. Key Eng. Mater. 2014, 604, 216–219. [Google Scholar] [CrossRef]
- Anandan, D.; Jaiswal, A.K. Synthesis methods of hydroxyapatite and biomedical applications: An updated review. J. Austral. Ceram. Soc. 2024, 60, 663–679. [Google Scholar] [CrossRef]
- Riman, R.E.; Suchanek, W.L. Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 2006, 45, 184–193. [Google Scholar]
- Aminian, A.; Solati-Hashjin, M.; Samadikuchaksaraei, A.; Bakhshi, F.; Gorjipour, F.; Farzadi, A.; Moztarzadeh, F.; Schmücker, M. Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram. Int. 2011, 37, 1219–1229. [Google Scholar] [CrossRef]
- Nagata, F.; Yamauchi, Y.; Tomita, M.; Kato, K. Hydrothermal synthesis of hydroxyapatite nanoparticles and their protein adsorption behavior. J. Ceram. Soc. Jpn. 2013, 121, 797–801. [Google Scholar] [CrossRef]
- Prihanto, A.; Muryanto, S.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Batch hydrothermal synthesis of nanocrystalline, thermostable hydroxyapatite at various pH and temperature levels. Inorg. Chem. Commun. 2023, 157, 111301. [Google Scholar] [CrossRef]
- Kawsar, M.; Hossain, M.S.; Alam, M.K.; Bahadur, N.M.; Shaikh, M.A.A.; Ahmed, S. Synthesis of pure and doped nano-calcium phosphates using different conventional methods for biomedical applications: A review. J. Mater. Chem. B. 2024, 12, 3376–3391. [Google Scholar] [CrossRef]
- Ezerskyte-Miseviciene, A.; Kareiva, A. Everything old is new again: A reinspection of solid-state method for the fabrication of high quality calcium hydroxyapatite bioceramics. Mendel. Commun. 2019, 29, 273–275. [Google Scholar] [CrossRef]
- Viana, J.R.; Mathias, A.A.M.; Santos, A.O.D.; Filho, P.D.F.; Graca, M.P.F.; Valent, M.A.; da Silva, C.C. Comparative analysis of solid state hydroxyapatite synthesis. Matéria 2020, 25, e-12588. [Google Scholar]
- Javadinejad, H.R.; Ebrahimi-Kahrizsangi, R. Thermal and kinetic study of hydroxyapatite formation by solid-state reaction. Int. J. Chem. Kinet. 2021, 53, 583–595. [Google Scholar] [CrossRef]
- Rhee, S.H. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 2002, 23, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Zhang, Q.; Saito, F. Mechanochemical synthesis of hydroxyapatite from Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 mixtures. J. Mater. Sci. 2000, 35, 5401–5405. [Google Scholar] [CrossRef]
- Amirthalingam, N.; Deivarajan, T.; Paramasivam, M. Mechano chemical synthesis of hydroxyapatite using dolomite. Mater. Lett. 2019, 254, 379–382. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Botelho, M.; Lu, W.; Monmaturapoj, N. Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering. J. Biomed. Mater. Res. Part A 2019, 107, 1654–1666. [Google Scholar] [CrossRef]
- Jeyhani, N.; Masaeli, E.; Mirahmadi-Zare, S.Z.; Alirezaei, S.; Shoaraye-Nejati, A. Effect of precursor on structural and antibacterial behaviour of hydroxyapatite/silver nanocomposites. Mater. Technol. 2022, 37, 1086–1096. [Google Scholar] [CrossRef]
- Brochu, B.M.; Sturm, S.R.; Goncalves, J.A.K.D.; Mirsky, N.A.; Sandino, A.I.; Panthaki, K.Z.; Panthaki, K.Z.; Nayak, V.V.; Daunert, S.; Witek, L.; et al. Advances in Bioceramics for Bone Regeneration: A Narrative Review. Biomimetics 2024, 9, 690. [Google Scholar] [CrossRef]
- Liu, C.R.; Xu, M.C.; Wang, Y.C.; Yin, Q.Y.; Hu, J.; Chen, H.; Sun, Z.W.; Liu, C.; Li, X.Y.; Zhou, W.J.; et al. Exploring the potential of hydroxyapatite-based materials in biomedicine: A comprehensive review. Mater. Sci. Eng. R Rep. 2024, 161, 100870. [Google Scholar] [CrossRef]
- Etinosa, P.O.; Osuchukwu, O.A.; Anisiji, E.O.; Lawal, M.Y.; Mohammed, S.A.; Ibitoye, O.I.; Oni, P.G.; Aderibigbe, V.D.; Aina, T.; Oyebode, D.; et al. In-depth review of synthesis of hydroxyapatite biomaterials from natural resources and chemical regents for biomedical applications. Arab. J. Chem. 2024, 17, 106010. [Google Scholar] [CrossRef]
- Veluswamy, R.; Balasubramaniam, G.; Natarajan, M.; Krishnaswamy, M.; Chinnappan, B.A.; Nagarajan, S.; Subramanian, B.; Velauthapillai, D. Multifunctional and sustainable hydroxyapatite from natural products for biomedical and industrial applications—A comprehensive review. Sust. Chem. Pharm. 2024, 41, 101653. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Abdullah, M.M.A.; Rahim, S.Z.A.; Luhar, S.; Sandu, A.V.; Jamil, N.H.; Nabialek, M. Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int. 2022, 48, 14959–14979. [Google Scholar] [CrossRef]
- Koshy, N.A.S.M.P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of hydroxyapatite from natural sources. Heliyon 2019, 5, e01588. [Google Scholar]
- Akram, M.; Ahmed, R.; Shakir, I.; Ibrahim, W.A.W.; Hussain, R. Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 2014, 49, 1461–1475. [Google Scholar] [CrossRef]
- Muntean, F.L.; Olariu, I.; Marian, D.; Olariu, T.; Petrescu, E.L.; Olariu, T.; Draghici, G.A. Hydroxyapatite from Mollusk Shells: Characteristics, Production, and Potential Applications in Dentistry. Dent. J. 2024, 12, 409. [Google Scholar] [CrossRef]
- Trinkunaite-Felsen, J.; Prichodko, A.; Semasko, M.; Skaudzius, R.; Beganskiene, A.; Kareiva, A. Synthesis and characterization of iron-doped/substituted calcium hydroxyapatite from seashells Macoma balthica (L.). Adv. Powder Technol. 2015, 26, 1287–1293. [Google Scholar] [CrossRef]
- Alkaron, W.; Almansoori, A.; Balazsi, K.; Balazsi, C. Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration. Materials 2024, 17, 4117. [Google Scholar] [CrossRef]
- Dogdu, S.A.; Turan, C.; Depci, T.; Ayas, D. Natural hydroxyapatite obtained from pufferfish teeth for potential dental application. J. Ceram. Process. Res. 2021, 22, 356–361. [Google Scholar]
- Dogdu, S.A.; Turan, C.; Depci, T.; Bahceci, E.; Sangun, K.; Ayas, D. Hydroxyapatite production and characterization from four pufferfish species teeth. J. Ceram. Process. Res. 2024, 25, 85–91. [Google Scholar]
- Akindoyo, J.O.; Ghazali, S.; Beg, M.D.H.; Jeyaratnam, N. Characterization and Elemental Quantification of Natural Hydroxyapatite Produced from Cow Bone. Chem. Eng. Technol. 2019, 42, 1805–1815. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S. Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications. Biotechnol. Bioproc. Eng. 2021, 26, 312–324. [Google Scholar] [CrossRef]
- Yong, P.; Macaskie, L.E.; Sammons, R.L.; Marquis, P.M. Synthesis of nanophase hydroxyapatite by a Serratia sp from waste-water containing inorganic phosphate. Biotechnol. Lett. 2004, 26, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, K.A.; Yatim, N.; Ali, N.; Rastegari, H. Recycling phosphorus and calcium from aquaculture waste as a precursor for hydroxyapatite (HAp) production: A review. Environ. Sci. Pollut. Res. 2022, 29, 46471–46486. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoaty, A.; Mousa, S. Synthesis and characterization of hydroxyapatite nanoparticles from calcium hydroxide fouled with gases evolved from smokestack of glass industry. Sci. Rep. 2024, 14, 10969. [Google Scholar] [CrossRef]
- Ummartyotin, S.; Tangnorawich, B. Utilization of eggshell waste as raw material for synthesis of hydroxyapatite. Coll. Polym. Sci. 2015, 293, 2477–2483. [Google Scholar] [CrossRef]
- Razak, A.; Isa, N.M.; Adzila, S. Synthesis of Calcium Phosphate Extracted from Eggshell Waste through Precipitation Method. Biointerface Res. Appl. Chem. 2021, 11, 15058–15067. [Google Scholar]
- Ghouse, R.M.; Natasha, A.N.; Shahedan, N.F.; Ramesh, S.; Bang, L.T. The Properties of Hydroxyapatite Derived from Carbonate Eggshell Waste Through Ball Milling and Heat Treatment Method. Int. J. Integr. Eng. 2024, 16, 112–120. [Google Scholar] [CrossRef]
- Idulhaq, M.; Mudigdo, A.; Utomo, P.; Wasita, B.; Trapsilantya, M.E. Structural Comparison of Hydroxyapatite from Clam Shell Waste and Eggshell Waste Compared to Commercial Synthetic Hydroxyapatite. Malays. Ortop. J. 2024, 18, 27–31. [Google Scholar]
- Zakaria, K.A.; Yatim, N.I.; Ali, N.; Lananan, F.; Kasan, N.A. Extracting valuable compounds from shrimp shell waste: Recovery of high-quality as calcium-centric resources for hydroxyapatite production. J. Aust. Ceram. Soc. 2024, 60, 1019–1029. [Google Scholar] [CrossRef]
- Irfa’i, M.A.; Schmahl, W.W.; Pusparizkita, Y.M.; Muryanto, S.; Prihanto, A.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Hydrothermally synthesized-nanoscale carbonated hydroxyapatite with calcium carbonates derived from green mussel shell wastes. J. Mol. Struct. 2024, 1306, 137837. [Google Scholar] [CrossRef]
- Nunez, D.; Elgueta, E.; Varaprasad, K.; Oyarzun, P. Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes. Mater. Lett. 2018, 230, 64–68. [Google Scholar] [CrossRef]
- Bee, S.L.; Hamid, Z.A.A. Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceram. Int. 2020, 46, 17149–17175. [Google Scholar] [CrossRef]
- Irfa’i, M.A.; Muryanto, S.; Pusparizkita, Y.M.; Prihanto, A.; Vaquer, A.S.; Schmahl, W.W.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Calcination-based direct extraction of hydroxyapatite from bovine bone waste. Environ. Technol. 2024, 45, 6249–6261. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, H.; da Silva, V.H.P.; Ruiz, P.L.M.; Ussui, V.; Lazar, D.R.R.; Renno, A.C.M.; Ribeiro, D.A. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J. Mech. Behav. Biomed. Mater. 2018, 80, 137–142. [Google Scholar] [CrossRef]
- Grigoraviciute-Puroniene, I.; Zarkov, A.; Tsuru, K.; Ishikawa, K.; Kareiva, A. A novel synthetic approach for the calcium hydroxyapatite from the food products. J. Sol-Gel Sci. Technol. 2019, 91, 63–71. [Google Scholar] [CrossRef]
- Takei, T.; Imazawa, N.; Miura, A.; Kumada, N.; Ogihara, K. Conversion of calcium sulfite waste to hydroxyapatite. Powder Technol. 2013, 237, 400–405. [Google Scholar] [CrossRef]
- Algamal, Y.; Khalil, N.M.; Saddiq, A.; Baghdadi, A.M. Antimicrobial activity of Hydroxyapatite nanoparticles prepared from marble wastes. Main Group Chem. 2022, 21, 865–873. [Google Scholar] [CrossRef]
- Bajorinaite, E.; Michailova, L.; Jureviciute, S.; Sokol, D.; Stankeviciute, Z.; Grigoraviciute, I.; Kareiva, A. Initial evaluation of waste phosphogypsum for its use as a precursor for bioceramic materials. Chemija 2024, 35, 35–44. [Google Scholar] [CrossRef]
- Raiseliene, R.; Linkaite, G.; Zarkov, A.; Kareiva, A.; Grigoraviciute, I. Large-Scale Green Synthesis of Magnesium Whitlockite from Environmentally Benign Precursor. Materials 2024, 17, 788. [Google Scholar] [CrossRef]
- Sugiura, Y.; Munar, M.L.; Ishikawa, K. Fabrication of octacalcium phosphate block through a dissolution-precipitation reaction using a calcium sulphate hemihydrate block as a precursor. J. Mater. Sci. Mater. Med. 2018, 29, 151. [Google Scholar] [CrossRef]
- Ishikawa, K.; Hayashi, K. Carbonate apatite artificial bone. Sci. Technol. Adv. Mater. 2021, 22, 683–694. [Google Scholar] [CrossRef]
- Garskaite, E.; Alinauskas, L.; Drienovsky, M.; Krajcovic, J.; Cicka, R.; Palcut, M.; Jonusauskas, L.; Malinauskas, M.; Stankeviciute, Z.; Kareiva, A. Fabrication of composite of nanocrystalline carbonated hydroxyapatite (cHAP) with polylactic acid (PLA) and its surface topographical structuring with direct laser writing (DLW). RSC Adv. 2016, 6, 72733–72743. [Google Scholar] [CrossRef]
- Landi, E.; Celotti, G.; Logroscino, G.; Tampieri, A. Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc. 2003, 23, 2931–2937. [Google Scholar] [CrossRef]
- Valenzuela, E.I.; Sanchez-Urzua, J.M.; Mendoza, P.G.Y.G.Y.; Navarro-Marquez, M.; Zayas-Olivares, A.; Gutierrez-Uribe, J.A.; Ortega-Lara, W.; Cervantes-Aviles, P. Recovery of calcium from maize Lime-Cooking wastewater as hydroxyapatite for biomedical applications. Sep. Purif. Technol. 2025, 365, 132777. [Google Scholar] [CrossRef]
- Deng, Q.L.; Bai, J.; Luo, C.L.; Liao, X.Z.; He, Q.R.; Tan, H.B.; Dong, F.Q.; Chen, W.L.; Jiang, J.L. Preparation of calcium-based cementitious material by decomposing phosphogypsum as the sole calcium source utilizing biomass synergized with iron accelerators. Proc. Saf. Environ. Prot. 2025, 195, 106775. [Google Scholar] [CrossRef]
Sample | 1 | 2 | 3 |
---|---|---|---|
>SBET (m2/g) | 60.5 | 58.7 | 15.9 |
Sext (m2/g) | 56.4 | 44.3 | 8.30 |
Vμ (cm3/g) | 0.0013 | 0.0040 | 0.0036 |
Vp (cm3/g) | 0.17 | 0.21 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jursene, E.; Michailova, L.; Jureviciute, S.; Stankeviciute, Z.; Grigoraviciute, I.; Kareiva, A. Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum. Materials 2025, 18, 2869. https://doi.org/10.3390/ma18122869
Jursene E, Michailova L, Jureviciute S, Stankeviciute Z, Grigoraviciute I, Kareiva A. Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum. Materials. 2025; 18(12):2869. https://doi.org/10.3390/ma18122869
Chicago/Turabian StyleJursene, Elzbieta, Laura Michailova, Simona Jureviciute, Zivile Stankeviciute, Inga Grigoraviciute, and Aivaras Kareiva. 2025. "Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum" Materials 18, no. 12: 2869. https://doi.org/10.3390/ma18122869
APA StyleJursene, E., Michailova, L., Jureviciute, S., Stankeviciute, Z., Grigoraviciute, I., & Kareiva, A. (2025). Synthesis and Characterization of Calcium Hydroxyapatite from Waste Phosphogypsum. Materials, 18(12), 2869. https://doi.org/10.3390/ma18122869