Dual-Band Resonant Acoustic Metasurfaces from Nested Negative Effective Parameter Unit
Abstract
:1. Introduction
2. Model and Methods
2.1. Model
2.2. Theoretical Analysis
3. Results and Discussion
3.1. Resonant Metasurfaces Based on Single-Layer Structures
3.2. Resonant Metasurfaces Based on Tandem Nested Bilayers
3.3. Resonant Metasurfaces Based on Parallel Nested Double-Layer Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHC | Split Hollow Cuboid |
SHT | Single-Opening Hollow Tube |
NSHC | Nested Split Hollow Cuboid |
NSHT | Nested Single-Opening Hollow Tube |
AMS | Acoustic Metasurface |
PLA | Polylactic Acid |
References
- Iqbal, R.; Qureshi, U.U.R.; Jie, C.; Rahman, Z.U.; Jafar, N. Polarization and Incident Angle Independent Multifunctional and Multiband Tunable THz Metasurface Based on VO2. Nanomaterials 2024, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xue, T.; Zhang, J.; Liu, L.; Xie, J.; Wang, G.; Yao, J.; Zhu, W.; Ye, X. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics 2021, 11, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hao, L.; Zhu, W.; Yang, X.; Yan, X.; Guan, C.; Xie, Y.; Chen, Z. Recent Progress in Resonant Acoustic Metasurfaces. Materials 2023, 16, 7044. [Google Scholar] [CrossRef]
- Du, X.-Y.; Chen, A.L.; Wang, Y.-S. Acoustic antenna based on arbitrarily curved coding metasurface for three-dimensional beamforming. Mech. Syst. Signal Process. 2025, 232, 112710. [Google Scholar] [CrossRef]
- Guo, J.; Qu, R.; Fang, Y.; Yi, W.; Zhang, X. A phase-gradient acoustic metasurface for broadband duct noise attenuation in the presence of flow. Int. J. Mech. Sci. 2023, 237, 107822. [Google Scholar] [CrossRef]
- Zhou, H.T.; Fu, W.X.; Li, X.S.; Wang, Y.F.; Wang, Y.S. Loosely coupled reflective impedance metasurfaces: Precise manipulation of waterborne sound by topology optimization. Mech. Syst. Signal Process 2022, 177, 109228. [Google Scholar] [CrossRef]
- Li, H.Z.; Liu, X.C.; Liu, Q.; Li, S.; Yang, J.S.; Tong, L.L.; Shi, S.B.; Schmidt, R.; Schroeder, K.U. Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator. Appl. Acoust. 2023, 205, 109297. [Google Scholar] [CrossRef]
- Dong, H.W.; Shen, C.; Zhao, S.D.; Qiu, W.; Zheng, H.; Zhang, C.; Cummer, S.A.; Wang, Y.S.; Fang, D.; Cheng, L. Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering. Natl. Sci. Rev. 2022, 9, nwac030. [Google Scholar] [CrossRef]
- Hamidreza Taghvaee, F.L.; Daz-Rubio, A.; Tretyakov, S. Subwavelength focusing by engineered power-flow conformal metamirrors. Phys. Rev. B 2021, 104, 235409. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Fan, X.D.; Liang, B.; Cheng, J.C.; Jing, Y. Ultrathin Acoustic Metasurface-Based Schroeder Diffuser. Phys. Rev. X 2017, 7, 021034. [Google Scholar] [CrossRef]
- Bi, S.; Yang, F.; Tang, S.; Shen, X.; Zhang, X.; Zhu, J.; Yang, X.; Peng, W.; Yuan, F. Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator. Materials 2023, 16, 1597. [Google Scholar] [CrossRef]
- Ijaz, S.; Noureen, S.; Rehman, B.; Zubair, M.; Massoud, Y.; Mehmood, M.Q. Multi-material described metasurface solar absorber design with absorption prediction using machine learning models. Mater. Today Commun. 2023, 36, 106377. [Google Scholar] [CrossRef]
- Cao, A.; Chen, N.; Zhu, W.; Chen, Z. Graphene-Based Dual-Band Metasurface Absorber with High Frequency Ratio. Nanomaterials 2024, 14, 1522. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Chen, X.; Yan, X.; Li, Y.; Zhang, L.; Xie, Y.; Pang, S.; Chen, Z. Flexible Manipulation of the Reflected Wavefront Using Acoustic Metasurface with Split Hollow Cuboid. Materials 2022, 15, 1189. [Google Scholar] [CrossRef]
- Zhou, H.T.; Fan, S.W.; Li, X.S.; Fu, W.X.; Wang, Y.F.; Wang, Y.S. Tunable arc-shaped acoustic metasurface carpet cloak. Smart Mater. Struct. 2020, 29, 065016. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Assouar, B. Multifunctional acoustic metasurface based on an array of Helmholtz resonators. Phys. Rev. B 2019, 99, 174109. [Google Scholar] [CrossRef]
- Ding, C.L.; Wang, Z.R.; Shen, F.L.; Chen, H.J.; Zhai, S.L.; Zhao, X.P. Experimental realization of acoustic metasurface with double-split hollow sphere. Solid State Commun. 2016, 229, 28–31. [Google Scholar] [CrossRef]
- Ding, C.L.; Chen, H.J.; Zhai, S.L.; Liu, S.; Zhao, X.P. The anomalous manipulation of acoustic waves based on planar metasurface with split hollow sphere. J. Phys. D Appl. Phys. 2015, 48, 045303. [Google Scholar] [CrossRef]
- Han, P.; Li, Z.; Zhang, Y.; Zhou, X.; Wang, D.; Zhang, K. Broadband tunable acoustic metasurface based on Helmholtz resonators. Acta Mech. Sin. 2025, 41, 124531. [Google Scholar] [CrossRef]
- Moore, D.B.; Smith, J.D.; Sambles, J.R.; Hibbins, A.P.; Starkey, T.A. Low-frequency acoustic surface waves on a coupled membrane-cavity metasurface. Phys. Rev. B 2025, 111, 155427. [Google Scholar] [CrossRef]
- Zhai, S.L.; Ding, C.L.; Chen, H.J.; Shen, F.L.; Luo, C.R.; Zhao, X.P. Anomalous Manipulation of Acoustic Wavefront With an Ultrathin Planar Metasurface. J. Vib. Acoust. Trans. ASME 2016, 138, 041019. [Google Scholar] [CrossRef]
- Jiang, R.; Shi, G.; Huang, C.; Zheng, W.; Li, S. Acoustic Insulation Characteristics and Optimal Design of Membrane-Type Metamaterials Loaded with Asymmetric Mass Blocks. Materials 2023, 16, 1308. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Jiang, R.; Zhang, Z.; Huang, Q. Acoustic Insulation Mechanism of Membrane-Type Acoustic Metamaterials Loaded with Arbitrarily Shaped Mass Blocks of Variable Surface Density. Materials 2022, 15, 1556. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, P.; Hou, Z.W.; Pei, Y.M. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range. Appl. Phys. Lett. 2017, 110, 161909. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Hou, Z.; Pei, Y. Magnetic-control multifunctional acoustic metasurface for reflected wave manipulation at deep subwavelength scale. Sci. Rep. 2017, 7, 9050. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Romero-Garcia, V.; Theocharis, G.; Richoux, O.; Achilleos, V.; Frantzeskakis, D.J. Second-Harmonic Generation in Membrane-Type Nonlinear Acoustic Metamaterials. Crystals 2016, 6, 86. [Google Scholar] [CrossRef]
- Chen, J.S.; Chen, Y.B.; Chen, H.W.; Yeh, Y.C. Bandwidth broadening for transmission loss of acoustic waves using coupled membrane-ring structure. Mater. Res. Express 2016, 3, 105801. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Zhang, J.; Shao, L.; Zhang, C.; Wang, X.; Jin, R.; Zhu, W. Shaping Electromagnetic Fields with Irregular Metasurface. Adv. Mater. Technol. 2022, 7, 2200035. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, F.; Sun, L.; Cao, A.; He, C.; Zhang, J.; Zhu, W. Dynamic millimeter-wave OAM beam generation through programmable metasurface. Nanophotonics 2022, 11, 1389–1399. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, D.; Liu, J.; Zhang, J.; Shao, L.; Wang, X.; Jin, R.; Zhu, W. 3-D Manipulation of Dual-Helical Electromagnetic Wavefronts With a Noninterleaved Metasurface. IEEE Trans. Antennas Propag. 2022, 70, 378–388. [Google Scholar] [CrossRef]
- Kamali, S.M.; Arbabi, E.; Arbabi, A.; Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 2018, 7, 1041–1068. [Google Scholar] [CrossRef]
- Erçağlar, V.; Hajian, H.; Serebryannikov, A.E.; Ozbay, E. Multifunctional tunable gradient metasurfaces for terahertz beam splitting and light absorption. Opt. Lett. 2021, 46, 3953–3956. [Google Scholar] [CrossRef]
- Weng, J.K.; Zhu, Y.F.; Liang, B.; Yang, J.; Cheng, J.C. Wavelength-dependent multi-functional wavefront manipulation for reflected acoustic waves. Appl. Phys. Express 2020, 13, 094003. [Google Scholar] [CrossRef]
- Chen, X.; Hao, L.; Yan, X.; Yang, X.; Liu, D.-A.; Zhang, X.; Pang, S.; Xie, Y.; Chen, Z. Multiband acoustic reflection metasurface with split hollow cubic. Mod. Phys. Lett. B 2023, 38, 2350220. [Google Scholar] [CrossRef]
- Ma, F.; Huang, M.; Xu, Y.; Wu, J.H. Bilayer synergetic coupling double negative acoustic metasurface and cloak. Sci. Rep. 2018, 8, 5906. [Google Scholar] [CrossRef]
- Wang, Y.B.; Luo, C.R.; Dong, B.; Zhai, S.L.; Ding, C.L.; Zhao, X.P. Ultrathin broadband acoustic reflection metasurface based on meta-molecule clusters. J. Phys. D Appl. Phys. 2019, 52, 085601. [Google Scholar] [CrossRef]
- Sridhar, A.; Liu, L.; Kouznetsova, V.G.; Geers, M.G.D. Homogenized enriched continuum analysis of acoustic metamaterials with negative stiffness and double negative effects. J. Mech. Phys. Solids 2018, 119, 104–117. [Google Scholar] [CrossRef]
- Rossing, T.D. The Science of Sound, 2nd ed.; Addison-Wesley Publishing Company: Don Mills, ON, Canada, 1990. [Google Scholar]
- Yang, X.; Hao, L.; Yan, X.; Liu, D.-A.; Guo, J.; Cheng, H.; Pang, S.; Xie, Y.; Chen, Z. Tunable double-layer dual-band metamaterial with negative mass density. Phys. Scr. 2023, 98, 115952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, L.; Liu, D.; Yan, X.; Yang, Q.; Guo, J.; Tian, X.; Xie, Y.; Pang, S.; Zhang, T.; Chen, Z. Dual-Band Resonant Acoustic Metasurfaces from Nested Negative Effective Parameter Unit. Materials 2025, 18, 2811. https://doi.org/10.3390/ma18122811
Hao L, Liu D, Yan X, Yang Q, Guo J, Tian X, Xie Y, Pang S, Zhang T, Chen Z. Dual-Band Resonant Acoustic Metasurfaces from Nested Negative Effective Parameter Unit. Materials. 2025; 18(12):2811. https://doi.org/10.3390/ma18122811
Chicago/Turabian StyleHao, Limei, Dongan Liu, Xiaole Yan, Qingning Yang, Jifeng Guo, Xingchen Tian, You Xie, Shaofang Pang, Tao Zhang, and Zhi Chen. 2025. "Dual-Band Resonant Acoustic Metasurfaces from Nested Negative Effective Parameter Unit" Materials 18, no. 12: 2811. https://doi.org/10.3390/ma18122811
APA StyleHao, L., Liu, D., Yan, X., Yang, Q., Guo, J., Tian, X., Xie, Y., Pang, S., Zhang, T., & Chen, Z. (2025). Dual-Band Resonant Acoustic Metasurfaces from Nested Negative Effective Parameter Unit. Materials, 18(12), 2811. https://doi.org/10.3390/ma18122811