The Influence of Different Parameters for the Removal of Pb and Zn Ions on Unmodified Waste Eggshells
Abstract
1. Introduction
- (i)
- Explore the influence of experimental conditions on the adsorption efficiency of chicken and quail eggshells using four types of agitation/activation systems for the adsorbent solution samples: classical and orbital agitation, ultrasonic, and microwave activation.
- (ii)
- Compare the adsorption capacity of chicken and quail eggshells for the removal of Pb2+ and Zn2+ from aqueous solutions, without any preliminary modification on the eggshells such as calcination or structural changes.
- (iii)
- Analyze the morpho-structural characteristics of eggshell powder samples post-exposure to heavy metal ions using FTIR and RAMAN spectroscopy, SEM-EDAX microanalysis, and X-ray diffraction (XRD).
- (iv)
- Improve the bioadsorption process of heavy metal ions, by applying environmentally friendly activation methods, aiming to reduce time and energy consumption, while maintaining high adsorption capacities, which was rarely reported.
2. Materials and Methods
2.1. Preparation of Unmodified Eggshell-Based Biosorbent
2.2. Description of Biosorption Process
2.3. Characterization of Aqueous Solutions Before and After the Adsorption Process
2.4. Characterization of Eggshell Powders Before and After the Biosorption Process
2.5. Statistical Analysis
3. Results and Discussion
3.1. Electrochemical Characterization of Aqueous Solutions Before and After the Adsorption Process and Removal Efficiency R
3.2. Characterization of Eggshell Powders Before and After the Biosorption Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Li, C.; Lam, C.H.; Subramanian, K.; Qin, Z.-H.; Mou, J.-H.; Jin, M.; Chopra, S.S.; Singh, V.; Ok, Y.S.; et al. Emerging waste valorisation techniques to moderate the hazardous impacts, and their path towards sustainability. J. Hazard. Mater. 2022, 423, 127023. [Google Scholar] [CrossRef] [PubMed]
- Quina, M.J.; Soares, M.A.R.; Quinta-Ferreira, R. Applications of industrial eggshell as a valuable anthropogenic resource. Resour. Conserv. Recycl. 2017, 123, 176–186. [Google Scholar] [CrossRef]
- Market Situation for Eggs CMO GREX on Animal Products—20 March 2025. Available online: https://circabc.europa.eu/sd/d/18f7766e-e9a9-46a4-bbec-94d4c181183f/0%20Circa%20%20egg%20no%20links.pdf (accessed on 24 March 2025).
- Agricola. Available online: https://agricola.ro/en/en/23-eggs (accessed on 21 March 2025).
- Prepelix-Farm. Available online: https://prepelix-farm.ro/categorie-produs/oua-consum/oua-consum-prepelita/ (accessed on 21 March 2025).
- Waheed, M.; Yousaf, M.; Shehzad, A.; Inam-Ur-Raheem, M.; Khan, M.K.I.; Khan, M.R.; Ahmad, N.; Abdullah; Aadil, R.M. Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends Food Sci. Technol. 2020, 106, 78–90. [Google Scholar] [CrossRef]
- Russ, W.; Schnappinger, M. Waste related to the food industry: A challenge in material loops. In Utilization of By-Products and Treatment of Waste in the Food Industry, 1st ed.; Oropoulou, V., Russ, W., Eds.; Springer: Boston, MA, USA, 2007; Volume 3, pp. 1–13. [Google Scholar] [CrossRef]
- Siemiradzka, W.; Dolinska, B.; Ryszka, F. New sources of calcium (chicken eggshells, chelates)—Preparation of raw material and tablets. Curr. Pharm. Biotechnol. 2018, 19, 566–572. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Ji, Y.-R.; Kang, Z.-W.; Li, F.; Ge, S.-F.; Yang, D.-P.; Ruan, J.; Fan, X.-Q. Integrating eggshell-derived CaCO3/MgO nanocomposites and chitosan into a biomimetic scaffold for bone regeneration. Chem. Eng. J. 2020, 395, 125098. [Google Scholar] [CrossRef]
- Khairnar, M.D.; Nair, S.S. Study on Eggshell and Fruit Peels as a Fertilizer. In Proceedings of the International Conference on Sustainable Development (ICSD 2019), New York, NY, USA, 24–25 September 2019; Novateur Publication: Pune, India, 2019; pp. 25–27. [Google Scholar]
- Commey, A.; Mensah, M. An experimental study on the use of eggshell powder as a pH modifier: Production of lime from eggshells. Int. J. Innov. Sci. Res. Technol. 2019, 4, 766–768. [Google Scholar]
- Wijaya, V.T.; Teo, S.S. Evaluation of eggshell as organic fertilizer on sweet basil. Int. J. Sustain. Agric. Res. 2019, 6, 79–86. [Google Scholar] [CrossRef]
- Buksh, N.; Yun, C.; Ping, X.; Jhatial, G.H.; Yanhai, S. Chicken eggshell as a potential eco-friendly, low-cost sorbent: A mini review. J. Environ. Earth Sci. 2018, 8, 28–39. [Google Scholar]
- Mignardi, S.; Archilletti, L.; Medeghini, L.; De Vito, C. Valorization of eggshell biowaste for sustainable environmental remediation. Sci. Rep. 2020, 10, 2436. [Google Scholar] [CrossRef]
- Sankhla, M.S.; Kumari, M.; Nandan, M.; Kumar, R.; Agrawal, P. Heavy metals contamination in water and their hazardous effect on human health-A review. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 759–766. [Google Scholar] [CrossRef]
- Eid, M.H.; Eissa, M.; Mohamed, E.A.; Ramadan, H.S.; Tamas, M.; Kovacs, A.; Szucs, P. New approach into human health risk assessment associated with heavy metals in surface water and groundwater using Monte Carlo Method. Sci. Rep. 2024, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
- Badeenezhad, A.; Soleimani, H.; Shahsavani, S.; Parseh, I.; Mohammadpour, A.; Azadbakht, O.; Javanmardi, P.; Faraji, H.; Babakrpur Nalosi, K. Comprehensive health risk analysis of heavy metal pollution using water quality indices and Monte Carlo simulation in R software. Sci. Rep. 2023, 13, 15817. [Google Scholar] [CrossRef]
- Chowdhary, P.; Bharagava, R.N.; Mishra, S.; Khan, N. Role of industries in water scarcity and its adverse effects on environment and human health. In Environmental Concerns and Sustainable Development. Volume 1: Air, Water and Energy Resources; Springer: Singapore, 2020; pp. 235–256. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K. Methodologies for removal of heavy metal ions from wastewater: An overview. Interdiscip. Environ. Rev. 2017, 18, 124–142. [Google Scholar] [CrossRef]
- Khaskheli, M.A.; Abro, M.I.; Chand, R.; Elahi, E.; Khokhar, F.M.; Majidano, A.A.; El Aaoud, E.H.; Rekik, N. Evaluating the effectiveness of eggshells to remove heavy metals from wastewater. Desalination Water Treat. 2021, 216, 239–245. [Google Scholar] [CrossRef]
- Habte, L.; Shiferaw, N.; Khan, M.D.; Thriveni, T.; Ahn, J.W. Sorption of Cd2+ and Pb2+ on aragonite synthesized from eggshell. Sustainability 2020, 12, 1174. [Google Scholar] [CrossRef]
- Chavan, M.A.; Mane, S. Removal of copper and zinc from aqueous solutions by using low cost adsorbents. Int. J. Sci. Res. 2015, 4, 3076–3080. [Google Scholar]
- Liao, S.-W.; Lin, C.-I.; Wang, L.-H. Kinetic study on lead (II) ion removal by adsorption onto peanut hull ash. J. Taiwan Inst. Chem. Eng. 2011, 42, 166–172. [Google Scholar] [CrossRef]
- Mouni, L.; Merabet, D.; Bouzaza, A.; Belkhiri, L. Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination 2011, 276, 148–153. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Sreekumari, S.S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011, 23, 1989–1998. [Google Scholar] [CrossRef]
- Saka, C. BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal. Appl. Pyrolysis 2012, 95, 21–24. [Google Scholar] [CrossRef]
- Wolfová, R.; Pertile, E.; Fečko, P. Removal of lead from aqueous solution by walnut shell. J. Environ. Chem. Ecotoxicol. 2013, 5, 159–167. [Google Scholar]
- Xu, X.; Liu, X.; Oh, M.; Park, J.B. Oyster shell as a low-cost adsorbent for removing heavy metal ions from wastewater. Pol. J. Environ. Stud. 2019, 28, 2949–2959. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Badrealam, S.; Roslan, F.S.; Dollah, Z.; Bakar, A.A.A.; Handan, R. Exploring the eggshell from household waste as alternative adsorbent for heavy metal removal from wastewater. In AIP Conference Proceedings 2020; AIP Publishing LLC: Penang, Malaysia, 2018; p. 020077. [Google Scholar] [CrossRef]
- Hamouda, M.A.; Sweidan, H.; Maraqa, M.A.; El-Hassan, H. Mechanistic study of Pb2+ removal from aqueous solutions using eggshells. Water 2020, 12, 2517. [Google Scholar] [CrossRef]
- Godelitsas, A.; Astilleros, J.M.; Hallam, K.R.; Löns, J.; Putnis, A. Microscopic and spectroscopic investigation of the calcite surface interacted with Hg(II) in aqueous solutions. Mineral. Mag. 2003, 67, 1193–1204. [Google Scholar] [CrossRef]
- Yusmartini, E.S.Y.; Mardwita, M.; Atikah, A.; Kaswari, S.C. Egg shells as an adsorbent for the adsorption of lead (Pb) and iron (Fe) metals. AJARCDE Asian J. Appl. Res. Community Dev. Empower. 2024, 8, 1–5. [Google Scholar] [CrossRef]
- Faridi, H.; Arabhosseini, A. Application of eggshell wastes as valuable and utilizable products: A review. Res. Agric. Eng. 2018, 64, 104–111. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Wu, L.; Younes, M.; Hincke, M. Biotechnological applications of eggshell: Recent advances. Front. Bioeng. Biotechnol. 2021, 9, 675364. [Google Scholar] [CrossRef]
- Sics, P.; Kalnina, D.; Levina, A. Pattern identification in data about unmodified waste eggshell application as an adsorbent for metal ion removal from aqueous media. Rev. Chem. Eng. 2024, 40, 683–706. [Google Scholar] [CrossRef]
- Nădejde, M.I.; Bran, E.-P.; Ureche, D.; Alexa, I.-C.; Lazăr, G.; Lazăr, I.M. Correlations between morphological characteristics and heavy metals concentration in three species of freshwater fish. Sci. Study Res.-Chem. Chem. Eng. Biotechnol. Food Ind. 2019, 20, 277–289. [Google Scholar]
- Zadeh, B.S.; Esmaeili, H.; Foroutan, R. Cadmium (II) removal from aqueous solution using microporous eggshell: Kinetic and equilibrium studies. Indones. J. Chem. 2018, 18, 265–271. [Google Scholar] [CrossRef]
- Praipipat, P.; Ngamsurach, P.; Pratumkaew, K. The synthesis, characterizations, and lead adsorption studies of chicken eggshell powder and chicken eggshell powder-doped iron (III) oxide-hydroxide. Arab. J. Chem. 2023, 16, 104640. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.; Lee, S.S.; Kim, S.-C.; Joo, J.-H.; Yang, J.E.; Ok, Y.S. Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J. Ind. Eng. Chem. 2012, 18, 198–204. [Google Scholar] [CrossRef]
- ISO 8288:1986; Water Quality. Determination of Cobalt, Nickel, Copper, Zinc, Cadmium and Lead—Flame Atomic Absorption Spectrometric Methods. International Organisation of Standardisation: Geneva, Switzerland, 1986.
- ISO/IEC 17025/2018; General Requirements for the Competence of Testing and Calibration Laboratories. International Organisation of Standardisation: Geneva, Switzerland, 2018.
- SR EN ISO 9001; 2015-Quality Management Systems—Requirements. ISO: Geneva, Switzerland, 2015.
- FactoMineR: Exploratory Multivariate Data Analysis with R. Available online: http://factominer.free.fr/ (accessed on 20 February 2025).
- Polat, A.; Aslan, S. Kinetic and isotherm study of cupper adsorption from aqueous solution using waste eggshell. J. Environ. Eng. Landsc. Manag. 2014, 22, 132–140. [Google Scholar] [CrossRef]
- Lawan, M.M.; Garba, I.B. Comparative analysis of heavy metal removal capacity of some selected eggshell. J. Emerg. Technol. Innov. Res. 2022, 9, a239–a247. [Google Scholar]
- Hanifah, H.N.; Hadisoebroto, G.; Cunayah, C.; Dani, D.A.K. Comparison of the effectiveness of calcined chicken and duck eggshells as Zn metal adsorbent using atomic absorption spectrophotometric. Indones. J Chem. 2024, 24, 939–950. [Google Scholar] [CrossRef]
- Mashangwa, T.D.; Tekere, M.; Sibanda, T. Determination of the efficacy of eggshell as a low-cost adsorbent for the treatment of metal laden effluents. Int. J. Environ. Res. 2017, 11, 175–188. [Google Scholar] [CrossRef]
- Ho, J.H.; Yeh, Y.N.; Wang, H.W.; Khoo, S.K.; Chen, Y.H.; Chow, C.F. Removal of nickel and silver ions using eggshells with membrane, eggshell membrane, and eggshells. Food Sci. Technol. Res. 2014, 20, 337–343. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Zaghloul, A.A.; Ibrahim, G.A.A. High performance microwave-enforced solid phase extraction of heavy metals from aqueous solutions using magnetic iron oxide nanoparticles-protected-nanosilica. Sep. Purif. Technol. 2016, 163, 169–172. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Shahat, A.; Al-Bogami, A.S.; Wijesiri, B.; Goonetilleke, A. The synergistic effect of ultrasound power and magnetite incorporation on the sorption/desorption behavior of Cr(VI) and As(V) oxoanions in an aqueous system. J. Colloid Interface Sci. 2020, 569, 76–88. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Hamza, M.F.; Guibal, E. Effect of agitation mode (mechanical, ultrasound and microwave) on uranium sorption using amine- and dithizone-functionalized magnetic chitosan hybrid materials. Chem. Eng. J. 2021, 411, 128553. [Google Scholar] [CrossRef]
- Gurav, V.L.; Samant, R.A. Application of waste egg shell for adsorption of Cd(II) and Pb(II) ions to protect environment: Equilibrium, kinetic and adsorption studies. Orient. J. Chem. 2021, 37, 128–135. [Google Scholar] [CrossRef]
- Carvalho, J.; Araújo, J.; Castro, F. Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: An overview. Waste Biomass Valorization 2011, 2, 157–167. [Google Scholar] [CrossRef]
- Awogbemi, O.; Inambao, F.; Onuh, E.I. Modification and characterization of chicken eggshell for possible catalytic applications. Heliyon 2020, 6, e05283. [Google Scholar] [CrossRef] [PubMed]
- Manoli, F.; Dalas, E. Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J. Cryst. Growth 2000, 218, 359–364. [Google Scholar] [CrossRef]
- Busca, G.; Resini, C. Vibrational Spectroscopy for the Analysis of Geological and Inorganic Materials. In Encyclopedia of Analytical Chemistry; Meyers, R.A., McKelvy, M.L., Eds.; John Wiley & Sons: Chichester, UK, 2000; pp. 10984–11020. [Google Scholar] [CrossRef]
- Aribia, W.B.; Trigui, A.; Alshammari, N.K.; Abdelmoleh, M. Development of phase change eco-composite materials from eggshell waste. Green Chem. Lett. Rev. 2024, 17, 2380060. [Google Scholar] [CrossRef]
- Wehrmeister, U.; Jacob, D.E.; Soldati, A.L.; Loges, N.; Häger, T.; Hofmeister, W. Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials. J. Raman Spectrosc. 2011, 42, 926–935. [Google Scholar] [CrossRef]
- Behrens, G.; Kuhn, L.T.; Ubic, R.; Heuer, A.H. Raman spectra of vateritic calcium carbonate. Spectrosc. Lett. 1995, 28, 983–995. [Google Scholar] [CrossRef]
- Kontoyannis, C.G.; Vagenas, N.V. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 2000, 125, 251–255. [Google Scholar] [CrossRef]
- Schmid, T.; Dariz, P. Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca(OH)2 and CaCO3. J. Raman Spectrosc. 2015, 46, 141–146. [Google Scholar] [CrossRef]
- Abatan, O.G.; Alaba, P.A.; Oni, B.A.; Akpojevwe, K.; Efeovbokhan, V.; Abnisa, F. Performance of eggshells powder as an adsorbent for adsorption of hexavalent chromium and cadmium from wastewater. SN Appl. Sci. 2020, 2, 1996. [Google Scholar] [CrossRef]
- de Oliveira Zonato, R.; Estevam, B.R.; Perez, I.D.; dos Santos Ribeiro, V.A.; Freire Boina, R. Eggshell as an adsorbent for removing dyes and metallic ions in aqueous solutions. Clean. Chem. Eng. 2022, 2, 100023. [Google Scholar] [CrossRef]
- Puspitasari, P.; Chairi, M.; Sukarni, S.; Suwandhy, N.; Supriyanto, W. Physical properties and compressibility of quail eggshell nanopowder with heat treatment temperature variations. Mater. Res. Express 2021, 8, 055008. [Google Scholar] [CrossRef]
Agitation/Activation Technique | Time [min] | Temperature | Other Parameters | Equipment Used |
---|---|---|---|---|
Classical agitation (CA) | 60 | r.t. | stirring speed 150 rpm | Magnetic laboratory stirrer—Nahita Blue, model 692, AuxiLab, Navarra, Spain |
40 °C | ||||
Orbital agitation (OA) | 30 | r.t. | rotation speed 150 rpm | Stuart Orbital Incubator Platform Shaker Lab, SI50, Keison, Chelmsford, UK |
40 °C | ||||
Ultrasound-assisted activation (US) | 30 | r.t. | - | Digital Pro Ultrasonic model PS-10A, Meditry Instrument Co., Ltd., Jiangsu, China |
40 °C | ||||
Microwaves assisted activation (MW) | 3 | - | 170 W | Microwave ovenn LG, MS2042DW, LG Electronics, Seoul, Republic of Korea |
340 W |
Parameters | Pb2+ | Zn2+ |
---|---|---|
pH | 5.52 ± 0.07 | 5.56 ± 0.03 |
EC [µS·cm−1] | 10.46 ± 1.12 | 18.09 ± 2.61 |
TDS [ppm] | 5.67 ± 1.10 | 8.80 ± 1.35 |
SAL [psu] | 0.013 ± 0.001 | 0.010 ± 0.001 |
Samples Name | 2θ Position (°) | Intensity (a.u.) | d (Å) | FWHM (°) | Crystallite Size (nm) |
---|---|---|---|---|---|
CE-CS | 29.51 | 2518 | 3.0265 | 0.1574 | 52.21 ± 0.01 |
QE-CS | 29.45 | 6871 | 3.0317 | 0.1563 | 52.59 ± 0.01 |
QE-Zn-MW | 29.51 | 6258 | 3.0265 | 0.1560 | 52.67 ± 0.01 |
CE-Pb-MW | 29.45 | 5650 | 3.0316 | 0.1563 | 52.59 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bran, E.P.; Patriciu, O.-I.; Grosu, L.; Alexa, I.-C.; Bălănucă, B.; Nicoară, A.-I.; Fînaru, A.-L. The Influence of Different Parameters for the Removal of Pb and Zn Ions on Unmodified Waste Eggshells. Materials 2025, 18, 2794. https://doi.org/10.3390/ma18122794
Bran EP, Patriciu O-I, Grosu L, Alexa I-C, Bălănucă B, Nicoară A-I, Fînaru A-L. The Influence of Different Parameters for the Removal of Pb and Zn Ions on Unmodified Waste Eggshells. Materials. 2025; 18(12):2794. https://doi.org/10.3390/ma18122794
Chicago/Turabian StyleBran, Elena Petronela, Oana-Irina Patriciu, Luminița Grosu, Irina-Claudia Alexa, Brîndușa Bălănucă, Adrian-Ionuț Nicoară, and Adriana-Luminița Fînaru. 2025. "The Influence of Different Parameters for the Removal of Pb and Zn Ions on Unmodified Waste Eggshells" Materials 18, no. 12: 2794. https://doi.org/10.3390/ma18122794
APA StyleBran, E. P., Patriciu, O.-I., Grosu, L., Alexa, I.-C., Bălănucă, B., Nicoară, A.-I., & Fînaru, A.-L. (2025). The Influence of Different Parameters for the Removal of Pb and Zn Ions on Unmodified Waste Eggshells. Materials, 18(12), 2794. https://doi.org/10.3390/ma18122794