Research on the Effect of Sodium Aluminate on the Early Performance Enhancement and Mechanism of Phosphogypsum-Based Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportion Design and Specimen Preparation
2.3. Physical and Mechanical Properties Test
2.4. Microscopic Test
3. Results and Discussion
3.1. Compressive Strength
3.2. Fluidity
3.3. Setting Time
3.4. XRD Analysis
3.5. SEM
3.6. Mechaisim Analysis
4. Conclusions
- (1)
- Sodium aluminate significantly enhances the 3 d strength of PBCMs. As the sodium aluminate content increases, the 3 d strength of PBCMs improves. When the content of sodium aluminate is 1 wt.%, the 3 d compressive strength of PBCMs reaches 10.72 MPa, a 587.39% increase compared to A0. And the 7 d strength of A4 reaches 15.57 MPa, a 39.66% improvement, while the 28 d compressive strength is nearly identical to that of the A0 group.
- (2)
- The addition of sodium aluminate negatively affected the fluidity of the slurry. When the content reached 0.8%, the slurry lost its fluidity.
- (3)
- The addition of sodium aluminate significantly shortens the setting time of PBCM. As the content of sodium aluminate increases, the setting time is progressively shortened. When the contents of sodium aluminate are 0.8 wt.% and 1 wt.%, the initial setting time is reduced by 4 h 15 min and 4 h 24 min, corresponding to final setting time reductions of approximately 3 h 53 min and 4 h 4 min compared to the control group.
- (4)
- Sodium aluminate effectively promotes the decomposition of phosphogypsum and accelerates the early hydration reaction, enhancing the formation of early hydration products, improving early strength, and shortening the setting time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.S.; Zhang, Q.L.; Qi, C.C.; Fourie, A.; Xiao, C.C. Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact. J. Clean. Prod. 2018, 186, 418–429. [Google Scholar] [CrossRef]
- Chernysh, Y.; Yakhnenko, O.; Chubur, V.; Roubík, H. Phosphogypsum Recycling: A Review of Environmental Issues, Current Trends, and Prospects. Appl. Sci. 2021, 11, 1575. [Google Scholar] [CrossRef]
- Pérez-López, R.; Macías, F.; Cánovas, C.R.; Sarmiento, A.M.; Pérez-Moreno, S.M. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures. Sci. Total Environ. 2016, 553, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Arhouni, F.E.; Hakkar, M.; Ouakkas, S.; Haneklaus, N.; Boukhair, A.; Nourreddine, A.; Benjelloun, M. Evaluation of the physicochemical, heavy metal and radiological contamination from phosphogypsum discharges of the phosphoric acid production unit on the coast of El Jadida Province in Morocco. J. Radioanal. Nucl. Chem. 2023, 332, 4019–4028. [Google Scholar] [CrossRef]
- Ren, K.; Cui, N.; Zhao, S.Y.; Zheng, K.; Ji, X.; Feng, L.C.; Cheng, X.; Xie, N. Low-Carbon Sustainable Composites from Waste Phosphogypsum and Their Environmental Impacts. Crystals 2021, 11, 719. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Ma, X.H.; Pan, H.Y.; Yang, X.D.; Zhang, X.H.; Lyu, Y.; Liao, W.J.; Shui, W.; Wu, J.; Xu, M.; et al. Investigating effects of phosphogypsum disposal practices on the environmental performance of phosphate fertilizer production using emergy analysis and carbon emission amounting: A case study from China. J. Clean. Prod. 2023, 409, 137248. [Google Scholar] [CrossRef]
- Duan, Z.Y.; Li, J.X.; Li, T.G.; Zheng, S.R.; Han, W.M.; Geng, Q.Y.; Guo, H.B. Influence of crystal modifier on the preparation of α-hemihydrate gypsum from phosphogypsum. Constr. Build. Mater. 2017, 133, 323–329. [Google Scholar] [CrossRef]
- Kadirova, Z.C.; Hojamberdiev, M.; Bo, L.L.; Hojiyev, R.; Okada, K. Ion uptake properties of low-cost inorganic sorption materials in the CaO-Al2O3-SiO2 system prepared from phosphogypsum and kaolin. J. Clean. Prod. 2014, 83, 483–490. [Google Scholar] [CrossRef]
- Rashad, A.M. Phosphogypsum as a construction material. J. Clean. Prod. 2017, 166, 732–743. [Google Scholar] [CrossRef]
- Xu, J.; Xu, F.; Jiang, Y.; Jiao, Y.Y.; Sun, T.; Yang, F.; Wu, Y.; Chen, S.Y.; Liu, Y.M.; Zhu, J.; et al. Mechanical properties and soluble phosphorus solidification mechanism of a novel high amount phosphogypsum-based mortar. Constr. Build. Mater. 2023, 394, 132176. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.S.; Yan, Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. J. Clean. Prod. 2016, 127, 204–213. [Google Scholar] [CrossRef]
- Lin, Z.S.; Zhao, Q. Strength of limestone-based non-calcined cement and its properties. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2009, 24, 471–475. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Z.S. Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement. Constr. Build. Mater. 2010, 24, 1296–1301. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum recycling: New horizons for a more sustainable road material application. J. Build. Eng. 2020, 30, 101267. [Google Scholar] [CrossRef]
- Lam, N.N. A study on super-sulfated cement using Dinh Vu phosphogypsum. In Proceedings of the 2nd International Conference on Sustainable Development in Civil, Urban and Transportation Engineering, CUTE 2018, Ho Chi Minh, Vietnam, 17–19 April 2018. [Google Scholar]
- Chen, M.S.; Liu, P.; Kong, D.W.; Wang, Y.; Wang, J.D.; Huang, Y.S.; Yu, K.; Wu, N.B. Influencing factors of mechanical and thermal conductivity of foamed phosphogypsum-based composite cementitious materials. Constr. Build. Mater. 2022, 346, 128462. [Google Scholar] [CrossRef]
- Liu, X.M.; Liu, E. The Synergistic Mechanism and Stability Evaluation of Phosphogypsum and Recycled Fine Powder-Based Multi-Source Solid Waste Geopolymer. Polymers 2023, 15, 2696. [Google Scholar] [CrossRef]
- Liu, X.M.; Liu, E.R.; Fu, Y.T. Reduction in Drying Shrinkage and Efflorescence of Recycled Brick and Concrete Fine Powder-Slag-Based Geopolymer. Appl. Sci. 2023, 13, 2997. [Google Scholar] [CrossRef]
- Liu, X.M.; Li, T.Y.; Tian, W.G.; Wang, Y.Q.; Chen, Y.H. Study on the durability of concrete with FNS fine aggregate. J. Hazard. Mater. 2020, 381, 120936. [Google Scholar] [CrossRef]
- Zhang, L.J.; Mo, K.H.; Yap, S.P.; Gencel, O.; Ling, T.C. Mechanical strength, water resistance and drying shrinkage of lightweight hemihydrate phosphogypsum-cement composite with ground granulated blast furnace slag and recycled waste glass. Constr. Build. Mater. 2022, 345, 128232. [Google Scholar] [CrossRef]
- Dong, M.; Li, J.S.; Lang, L.; Chen, X.; Jin, J.X.; Ma, W. Recycling thermal modified phosphogypsum in calcium sulfoaluminate cement: Evolution of engineering properties and micro-mechanism. Constr. Build. Mater. 2023, 373, 130823. [Google Scholar] [CrossRef]
- Sun, B.B.; Wu, H.; Song, W.M.; Li, Z.; Yu, J. Hydration, microstructure and autogenous shrinkage behaviors of cement mortars by addition of superabsorbent polymers. Front. Struct. Civ. Eng. 2020, 14, 1274–1284. [Google Scholar] [CrossRef]
- Pinto, S.R.; da Luz, C.A.; Munhoz, G.S.; Medeiros, R.A. Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate. Cem. Concr. Res. 2020, 136, 106172. [Google Scholar] [CrossRef]
- Pratap, B.; Mondal, S.; Rao, B.H. Mechanical and durability assessment of phosphogypsum-bauxite residue-fly ash-based alkali-activated concrete. Constr. Build. Mater. 2024, 411, 134670. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Shui, Z.H.; Sun, T.; Li, Z.W. An Eco-Friendly Phosphogypsum-Based Cementitious Material: Performance Optimization and Enhancing Mechanisms. Front. Phys. 2022, 10, 892037. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Shui, Z.H.; Sun, T.; Li, X.S.; Zhang, M.Z. Recycling utilization of phosphogypsum in eco excess-sulphate cement: Synergistic effects of metakaolin and slag additives on hydration, strength and microstructure. J. Clean. Prod. 2022, 358, 131901. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, G.J.; Zhao, K.; Wang, M.L.; Wu, B.S.; Li, S.J.; Chen, Q.L.; Geng, J.B. Mechanical properties, permeability and microstructure of steam-cured fly ash mortar mixed with phosphogypsum. Constr. Build. Mater. 2023, 400, 132582. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, B.; Liang, F.; Xue, Z.; Qian, B.; Wang, J.; Zhou, L.; Zang, J.; Liang, R.; Li, Y.; et al. Use of untreated phosphogypsum as a raw material for autoclaved aerated concrete preparation. J. Build. Eng. 2023, 64, 105607. [Google Scholar] [CrossRef]
- Li, W.X.; Xie, Y.J.; Ma, K.L.; Long, G.C.; Zhao, H.; Peng, Y.M. Multiscale mechanical evolution of the interface between self-compacting concrete and steam-cured concrete. J. Build. Eng. 2023, 73, 106793. [Google Scholar] [CrossRef]
- Lin, H.; Li, Y.; Yang, B.; Xie, D. Effects of different admixtures on the working performance and mechanical properties of phosphogypsum slag-based composite cementitious materials. J. Build. Eng. 2024, 95, 110268. [Google Scholar] [CrossRef]
- Yang, R.H.; He, T.S. Influence of liquid accelerator based on sodium aluminate on the early hydration of cement, C3A and C3S pastes. Adv. Cem. Res. 2022, 34, 443–457. [Google Scholar] [CrossRef]
- Lv, Q.F.; Wang, Z.S.; Gu, L.Y.; Chen, Y.; Shan, X.K. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer. J. Cent. South Univ. 2020, 27, 1691–1702. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yu, J.; Wang, J.J.; Xiang, D.; Gu, H.; Cheng, J.H. Effects of sodium aluminate and quicklime on the properties of CSA grouting materials. J. Build. Eng. 2022, 58, 105060. [Google Scholar] [CrossRef]
- Han, J.G.; Wang, K.J.; Shi, J.Y.; Wang, Y. Influence of sodium aluminate on cement hydration and concrete properties. Constr. Build. Mater. 2014, 64, 342–349. [Google Scholar] [CrossRef]
- GB/T 1346-2024; Methods for Determining Water Requirement for Standard Consistency, Setting Time, and Stability of Cement. State Administration for Market Supervision and Administration of China: Beijing, China; National Standardization Administration of China: Beijing, China, 2024.
- GB/T 8077-2023; Test Methods for the Homogeneity of Concrete Admixtures. State Administration for Market Supervision and Administration of China: Beijing, China; National Standardization Administration of China: Beijing, China, 2023.
- Tang, P.; Wen, J.; Fu, Y.; Liu, X.; Chen, W. Improving the early-age properties of eco-binder with high volume waste gypsum: Hydration process and ettringite formation. J. Build. Eng. 2024, 86, 108988. [Google Scholar] [CrossRef]
- Song, P.F.; Wang, X.H.; Wang, Y.; Zhou, J.; Qiu, H.P.; Rahimi, A.; Ingham, J. Assess the interaction of water reducers and accelerators on the rheological and early hydration properties of cement-based materials. J. Mater. Res. Technol. 2025, 36, 806–822. [Google Scholar] [CrossRef]
- Ooi, W.E.; Liew, Y.M.; Heah, C.Y.; Abdullah, M.M.A.; Li, L.Y.; Ho, L.; Loong, F.K.; Shee-Ween, O.; Ng, H.T.; Ng, Y.S.; et al. Comparative mechanical and microstructural properties of high calcium fly ash one-part geopolymers activated with Na2SiO3-anhydrous and NaAlO2. J. Mater. Res. Technol. 2021, 15, 3850–3866. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Zhao, J.Y. Effect of Sodium Aluminate Dosage as a Solid Alkaline Activator on the Properties of Alkali-Activated Slag Paste. Adv. Mater. Sci. Eng. 2021, 2021, 6658588. [Google Scholar] [CrossRef]
- Dan, H.C.; Ma, Z.M.; Li, M.J.; Ma, S.L.; Tan, J.W. Early performance and bonding mechanism of metakaolin (MK)- ground granulated blast furnace slag (GGBS) based geopolymer road repair mortar. Int. J. Pavement Eng. 2023, 24, 2252156. [Google Scholar] [CrossRef]
- Jiang, D.B.; Li, X.G.; Jiang, W.G.; Li, C.J.; Lv, Y.; Zhou, Y. Effect of tricalcium aluminate and sodium aluminate on thaumasite formation in cement paste. Constr. Build. Mater. 2020, 259, 119842. [Google Scholar] [CrossRef]
- Liu, J.; Ma, K.L.; Shen, J.T.; Zhu, J.B.; Long, G.C.; Xie, Y.J.; Liu, B.J. Influence of recycled concrete aggregate enhancement methods on the change of microstructure of ITZs in recycled aggregate concrete. Constr. Build. Mater. 2023, 371, 130772. [Google Scholar] [CrossRef]
- Song, W.M.; Zhang, M.M.; Wu, H. Gray correlation analysis between mechanical performance and pore characteristics of permeable concrete. J. Build. Eng. 2024, 86, 108793. [Google Scholar] [CrossRef]
- Ma, K.L.; Feng, K.W.; Wang, Z.Z.; Long, G.C.; Xie, Y.J.; Li, W.X. Mechanical properties and crack evolution of SCC with macro-crack under freeze-thaw cycles. J. Build. Eng. 2023, 69, 106323. [Google Scholar] [CrossRef]
- Peng, Y.M.; Ma, K.L.; Long, G.C.; Xie, Y.J.; Yu, L.N.; Xie, Q.Q. Effect of Packing Density According to CPM on the Rheology of Cement-Fly Ash-Slag Paste. J. Mater. Civ. Eng. 2021, 33, 04021209. [Google Scholar] [CrossRef]
- Meng, W.Q.; Ma, K.L.; Long, G.C.; Meng, Q.Y.; Chen, R.J.; Fan, J.Z. Influence of Molybdenum Tailings Powder on the Hydration Characteristics of Cement Paste. J. Mater. Civ. Eng. 2024, 36, 04024115. [Google Scholar] [CrossRef]
- Wang, J.H.; Xie, Y.J.; Zhong, X.H.; Li, L.J. Test and simulation of cement hydration degree for shotcrete with alkaline and alkali-free accelerators. Cem. Concr. Compos. 2020, 112, 103684. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; Song, W.M.; Bai, S. Effects of superabsorbent polymers on moisture migration and accumulation behaviors in soil. J. Clean. Prod. 2021, 279, 123841. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Pan, X.L.; Wang, J.Z.; Yu, H.Y.; Tu, G.F. Reaction kinetics and mechanism of calcium oxide in dilute sodium aluminate solution with oxalate based on lime causticization. Trans. Nonferrous Met. Soc. China 2019, 29, 1312–1322. [Google Scholar] [CrossRef]
- Chen, J.X.; Plank, J. Which factors impact the effectiveness of PCEs in alkali-activated slag cements? Cem. Concr. Res. 2025, 190, 107807. [Google Scholar] [CrossRef]
- Feng, K.W.; Ma, K.L.; Yang, H.Z.; Long, G.C.; Xie, Y.J.; Zeng, X.H.; Tang, Z.; Usman, I.U. Influence of cellulose ethers on rheological properties of cementitious materials: A review. J. Build. Eng. 2024, 95, 110347. [Google Scholar] [CrossRef]
- Peng, J.H.; Zhang, J.X.; Qu, J.D. The mechanism of the formation and transformation of ettringite. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2006, 21, 158–161. [Google Scholar] [CrossRef]
- Herrera-Mesen, C.; Salvador, R.P.; Ikumi, T.; Cavalaro, S.H.P.; Aguado, A. External sulphate attack of sprayed mortars with sulphate-resisting cement: Influence of accelerator and age of exposition. Cem. Concr. Compos. 2020, 114, 103614. [Google Scholar] [CrossRef]
- Liu, Y.T.; Zhang, Y.Y.; Dong, B.Q.; Wang, Y.S. Limestone powder activated by sodium aluminate: Hydration and microstructure. Constr. Build. Mater. 2023, 368, 130446. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, B.; He, Y.Z.; Li, F.; Long, G.C.; Du, Y.F. Preparation and properties of sustainable magnesium phosphate cement composites with recycled tire rubber particles. J. Clean. Prod. 2020, 262, 121253. [Google Scholar] [CrossRef]
- Song, W.M.; Yi, J.; Wu, H.; He, X.; Song, Q.W.; Yin, J. Effect of carbon fiber on mechanical properties and dimensional stability of concrete incorporated with granulated-blast furnace slag. J. Clean. Prod. 2019, 238, 117819. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | SO3 | CaO | Fe2O3 | P2O5 | MgO | Na2O | K2O | BaO | |
---|---|---|---|---|---|---|---|---|---|---|
PG | 5.6 | 0.363 | 51.88 | 40.78 | 0.277 | 0.707 | 0.062 | - | 0.0883 | 0.12 |
GGBS | 30.99 | 12.30 | 2.23 | 33.8 | 1.01 | 0.031 | 7.96 | 0.586 | 0.725 | 0.15 |
No. | Phosphogypsum | Slag | Lime | Sodium Aluminate | Superplasticizer |
---|---|---|---|---|---|
A0 | 45 | 53 | 2 | 0.00 | 0.05 |
A1 | 45 | 53 | 2 | 0.20 | 0.05 |
A2 | 45 | 53 | 2 | 0.50 | 0.05 |
A3 | 45 | 53 | 2 | 0.80 | 0.05 |
A4 | 45 | 53 | 2 | 1.00 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhai, S.; Zhang, X. Research on the Effect of Sodium Aluminate on the Early Performance Enhancement and Mechanism of Phosphogypsum-Based Cementitious Materials. Materials 2025, 18, 2707. https://doi.org/10.3390/ma18122707
Liu X, Zhai S, Zhang X. Research on the Effect of Sodium Aluminate on the Early Performance Enhancement and Mechanism of Phosphogypsum-Based Cementitious Materials. Materials. 2025; 18(12):2707. https://doi.org/10.3390/ma18122707
Chicago/Turabian StyleLiu, Xiaoming, Shuchao Zhai, and Xihe Zhang. 2025. "Research on the Effect of Sodium Aluminate on the Early Performance Enhancement and Mechanism of Phosphogypsum-Based Cementitious Materials" Materials 18, no. 12: 2707. https://doi.org/10.3390/ma18122707
APA StyleLiu, X., Zhai, S., & Zhang, X. (2025). Research on the Effect of Sodium Aluminate on the Early Performance Enhancement and Mechanism of Phosphogypsum-Based Cementitious Materials. Materials, 18(12), 2707. https://doi.org/10.3390/ma18122707