Novel Research on Selected Mechanical and Environmental Properties of the Polyurethane-Based P3HB Nanobiocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Composite Production
2.2.2. Mechanical Property Test Sample Preparation
2.2.3. Monotonic Tensile Tests
2.2.4. Three-Point Bending Tests
2.2.5. Biodegradability Test
- A blank sample (soil and water only),
- A positive control (starch: an easily biodegradable natural polymer),
- A negative control (polyethylene: a non-biodegradable polymer),
- And four tested samples: pure P3HB, and three composites containing 10% by mass polyurethane and increasing Cloisite®30B content (1%, 2%, and 3% by mass).
2.2.6. Infrared Spectroscopy Measurements
2.2.7. Thermal Analysis
2.2.8. DSC Analysis
2.2.9. Elemental Analysis
3. Results and Discussion
3.1. Mechanical Properties of the Hybrid Nanobiocomposites
3.2. Biodegradability of the Resulted Hybrid Polymer Nanobiocomposites
3.3. Thermal Properties of Polymer Hybrid Nanobiocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahman, Y.; Ugwu, C.U. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues. Bioprocess Biosyst. Eng. 2014, 37, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Aguirre, C.; Pérez, A.; Bahamonde, S.S.; Urtuvia, V.; Díaz-Barrera, A.; Peña, C. Recent Trends in the Production and Recovery of Bioplastics Using Polyhydroxyalkanoates Copolymers. Microorganisms 2024, 12, 2135. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Junior, R.R.; Cezario, F.E.M.; Antonino, L.D.; dos Santos, D.J.; Lackner, M. Characterization of Poly(3-hydroxybutyrate) (P3HB) from Alternative, Scalable (Waste) Feedstocks. Bioengineering 2023, 10, 1382. [Google Scholar] [CrossRef]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V.A. Main Characteristics, Properties, Improvements, and Market Data of Polyhydroxyalkanoates. In Chapter 24 Handbook of Sustainable Polymers Processing and Applications; Pan Stanford: Redwood City, CA, USA, 2015. [Google Scholar] [CrossRef]
- Vayshbeyn, L.I.; Mastalygina, E.E.; Olkhov, A.A.; Podzorova, M.V. Poly(lactic acid)-Based Blends: A Comprehensive Review. Appl. Sci. 2023, 13, 5148. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Samper, M.D.; Aldas, M.; López, J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials 2017, 10, 1008. [Google Scholar] [CrossRef]
- Ikejima, T.; Cao, A.; Yoshie, N.; Inoue, Y. Surface composition and biodegradability of poly(3-hydroxybutyric acid)/poly(vinyl alcohol) blend films. Polym. Degrad. Stab. 1998, 62, 463–469. [Google Scholar] [CrossRef]
- Xing, P.; Ai, X.; Dong, L.; Feng, Z. Miscibility and Crystallization of Poly(β-hydroxybutyrate)/Poly(vinyl acetate-co-vinyl alcohol) Blends. Macromolecules 1998, 31, 6898–6907. [Google Scholar] [CrossRef]
- Lotti, N.; Pizzoli, M.; Ceccorulli, G.; Scandola, M. Binary blends of microbial poly(3-hydroxybutyrate) with polymethacrylates. Polymer 1993, 34, 4935–4940. [Google Scholar] [CrossRef]
- Garcia-Garcia, D.; Rayón, E.; Carbonell-Verdu, A.; Lopez-Martinez, J.; Balart, R. Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. Eur. Polym. J. 2017, 86, 41–57. [Google Scholar] [CrossRef]
- Sukhanova, A.; Murzova, A.; Boyandin, A.; Kiselev, E.; Sukovatyi, A.; Kuzmin, A.; Shabanov, A. Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. Int. J. Biol. Macromol. 2020, 165, 2947–2956. [Google Scholar] [CrossRef] [PubMed]
- Bharathiraja, B.; Sangeetha, S. Polyhydroxyalkanoates and its composites for biomedical applications. Int. J. Biol. Macromol. 2020, 149, 830–845. [Google Scholar]
- Raza, Z.A.; Khalil, S.; Abid, S. Recent progress in development and chemical modification of poly(hydroxybutyrate) based blends for potential medical applications. Int. J. Biol. Macromol. 2020, 160, 77–100. [Google Scholar] [CrossRef]
- Conti, D.; Yoshida, M.; Pezzin, S.; Coelho, L. Miscibility and crystallinity of poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Thermochim. Acta 2006, 450, 61–66. [Google Scholar] [CrossRef]
- Olkhov, A.A.; Markin, V.S.; Kosenko, R.Y.; Gol’dshtrakh, M.A.; Iordanskii, A.L. Influence of the film forming procedure on the interaction in polyhydroxybutyrate-polyurethane blends. Russ. J. Appl. Chem. 2015, 88, 308–313. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, H.; Wang, R.; Peng, C.; Zhou, Z.; Zhu, M. Morphology and properties of renewable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends with thermoplastic polyurethane. Polym. Eng. Sci. 2013, 54, 1113–1119. [Google Scholar] [CrossRef]
- Martínez-Abad, A.; González-Ausejo, J.; Lagarón, J.M.; Cabedo, L. Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance. Polym. Degrad. Stab. 2016, 132, 52–61. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Melinte, V.; Frone, A.N.; Nicolae, C.A.; Gabor, A.R.; Capră, L. Influence of Biobased Polyurethane Structure on Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)−Polyurethane Blends. J. Polym. Environ. 2022, 31, 1584–1597. [Google Scholar] [CrossRef]
- Frone, A.N.; Panaitescu, D.M.; Gabor, A.R.; Nicolae, C.-A.; Ghiurea, M.; Bradu, C. Poly(3-hydroxybutyrate) Modified with Thermoplastic Polyurethane and Microfibrillated Cellulose: Hydrolytic Degradation and Thermal and Mechanical Properties. Polymers 2024, 16, 3606. [Google Scholar] [CrossRef]
- Saha, P.; Khomlaem, C.; Aloui, H.; Kim, B.S. Biodegradable Polyurethanes Based on Castor Oil and Poly (3-hydroxybutyrate). Polymers 2021, 13, 1387. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Pang, A.; Yang, R.; Guo, X.; He, J.; Zhai, J. Study on Mechanical Properties of Polyurethane Cross-Linked P(E-co-T)/PEG Blended Polyether Elastomer. Polymers 2022, 14, 5419. [Google Scholar] [CrossRef]
- Zarzyka, I.; Czerniecka-Kubicka, A.; Hęclik, K.; Dobrowolski, L.; Pyda, M.; Leś, K.; Walczak, M.; Białkowska, A.; Bakar, M. Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes–Preparation and properties. Acta Bioeng. Biomech. 2021, 23, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Zarzyka, I.; Czerniecka-Kubicka, A.; Hęclik, K.; Dobrowolski, L.; Krzykowska, B.; Białkowska, A.; Bakar, M. Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols. Acta Bioeng. Biomech. 2022, 24, 75–89. [Google Scholar] [CrossRef]
- Krzykowska, B.; Czerniecka-Kubicka, A.; Białkowska, A.; Bakar, M.; Hęclik, K.; Dobrowolski, L.; Longosz, M.; Zarzyka, I. Polymer Biocompositions and Nanobiocomposites Based on P3HB with Polyurethane and Montmorillonite. Int. J. Mol. Sci. 2023, 24, 17405. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhou, W.; Ma, X.; Sun, B. Fabrication and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite. e-Polymers 2020, 21, 038–046. [Google Scholar] [CrossRef]
- Panayotidou, E.; Baklavaridis, A.; Zuburtikudis, I.; Achilias, D.S. Nanocomposites of poly(3-hydroxybutyrate)/organomodified montmorillonite: Effect of the nanofiller on the polymer’s biodegradation. J. Appl. Polym. Sci. 2014, 132, 41656. [Google Scholar] [CrossRef]
- Chinthalapalli, S.; Soundiraraju, B.; Siripothu, S.; Dash, S.S. Insights into the Improved Gas Barrier Properties of Polyurethane–Clay Nanocomposite-Coated Nylon: A Solid-State NMR Study. ACS Omega 2023, 8, 42144–42151. [Google Scholar] [CrossRef]
- Pérez, G.; Jin, A.; del Valle, L.J.; Fontdecaba, E.; Puiggalí, J. Ultrasonic Molding of Poly(3-hydroxybutyrate) and Its Clay Nanocomposites: Efficient Microspecimens Production with Minimal Material Loss and Degradation. Appl. Sci. 2024, 14, 11959. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Chaudhary, V.; Akhila, P.P.; Sunooj, K.V. Recent functionality developments in Montmorillonite as a nanofiller in food packaging. Trends Food Sci. Technol. 2023, 140, 104148. [Google Scholar] [CrossRef]
- Kalendova, A.; Kupkova, J.; Urbaskova, M.; Merinska, D. Applications of Clays in Nanocomposites and Ceramics. Minerals 2024, 14, 93. [Google Scholar] [CrossRef]
- Hassen, J.H.; Abdalkadir, H.K.; Abed, S.F. An overview of medical applications of montmorillonite clay. J. Med. Sci. 2023, 92, e826. [Google Scholar] [CrossRef]
- Bee, S.-L.; Abdullah, M.A.A.; Bee, S.-T.; Sin, L.T.; Rahmat, A.R. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci. 2018, 85, 57–82. [Google Scholar] [CrossRef]
- Gómez, M.; Palza, H.; Quijada, R. Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites. Polymers 2016, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-K.; Lee, H.-C. Effects of montmorillonite and compatibilizer on the mechanical and thermal properties of dispersing intercalated PMMA nanocomposites. Int. Commun. Heat Mass Transf. 2015, 67, 21–28. [Google Scholar] [CrossRef]
- Xiong, J.; Zheng, Z.; Jiang, H.; Ye, S.; Wang, X. Reinforcement of polyurethane composites with an organically modified montmorillonite. Compos. Part A Appl. Sci. Manuf. 2007, 38, 132–137. [Google Scholar] [CrossRef]
- Soares Silva, L.C.; Busto, R.V.; Camani, P.H.; Zanata, L.; Gomes Coelho, L.H.; Benassi, R.F.; dos Santos Rosa, D. Influence of Montmorillonite and Clinoptilolite on the Properties of Starch/Minerals Biocomposites and Their Effect on Aquatic Environments. J. Polym. Environ. 2021, 29, 382–391. [Google Scholar] [CrossRef]
- Reddy, M.M.; Deighton, M.; Bhattacharya, S.; Parthasarathy, R. Biodegradation of montmorillonite filled oxo-biodegradable polyethylene. J. Appl. Polym. Sci. 2009, 113, 2826–2832. [Google Scholar] [CrossRef]
- Yussuf, A.A.; Al-Saleh, M.A.; Al-Samhan, M.M.; Al-Enezi, S.T.; Al-Banna, A.H.; Abraham, G. Investigation of Polypropylene-Montmorillonite Clay Nanocomposite Films Containing a Pro-degradant Additive. J. Polym. Environ. 2017, 26, 275–290. [Google Scholar] [CrossRef]
- Zarzyka, I.; Krzykowska, B.; Hęclik, K.; Frącz, W.; Janowski, G.; Bąk, Ł.; Klepka, T.; Bieniaś, J.; Ostapiuk, M.; Tor-Świątek, A.; et al. Modification of Poly(3-Hydroxybutyrate) with a Linear Polyurethane Modifier and Organic Nanofiller—Preparation and Structure–Property Relationship. Materials 2024, 17, 5542. [Google Scholar] [CrossRef]
- PN-EN ISO 527-1:2020-01; Plastics. Determination of Mechanical Properties in Static Tension. Part 1: General Rules. ISO: Geneva, Switzerland, 2020.
- PN-EN ISO 178:2019-06; Plastics. Determination of Bending Properties. ISO: Geneva, Switzerland, 2019.
- ISO 17556:2012; Plastics–Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. ISO: Geneva, Switzerland, 2012.
- ISO 11274:2019; Soil Quality–Determination of the Water-Retention Characteristic–Laboratory Methods. ISO: Geneva, Switzerland, 2019.
- ISO 10390:2021; Soil Quality–Determination of pH. ISO: Geneva, Switzerland, 2021.
- Alsaadi, M.; Erkliğ, A. Effects of clay and silica nanoparticles on the Charpy impact resistance of a carbon/aramid fiber reinforced epoxy composite. Mater. Test. 2019, 61, 65–70. [Google Scholar] [CrossRef]
- Liang, J. Impact fracture behavior and morphology of polypropylene/graphene nanoplatelets composites. Polym. Compos. 2018, 40, E511–E516. [Google Scholar] [CrossRef]
- Demircan, Ö.; Kadıoğlu, K.; Çolak, P.; Günaydın, E.; Doğu, M.; Topalömer, N.; Eskizeybek, V. Compression after Impact and Charpy Impact Characterizations of Glass Fiber/Epoxy/MWCNT Composites. Fibers Polym. 2020, 21, 1824–1831. [Google Scholar] [CrossRef]
- Kumar, G.N.; Kumar, C.S.; Rao, G.S. An experimental investigation on mechanical properties of hybrid polymer nanocomposites. Mater. Today Proc. 2019, 19, 691–699. [Google Scholar] [CrossRef]
- Champa-Bujaico, E.; Díez-Pascual, A.M.; Redondo, A.L.; Garcia-Diaz, P. Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques. Compos. Part B Eng. 2024, 269, 111099. [Google Scholar] [CrossRef]
- Botana, A.; Mollo, M.; Eisenberg, P.; Sanchez, R.M.T. Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl. Clay Sci. 2010, 47, 263–270. [Google Scholar] [CrossRef]
- Panaitescu, D.M.; Lupescu, I.; Frone, A.N.; Chiulan, I.; Nicolae, C.A.; Tofan, V.; Stefaniu, A.; Somoghi, R.; Trusca, R. Medium chain-length polyhydroxyalkanoate copolymer modified by bacterial cellulose for medical devices. Biomacromolecules 2017, 18, 3222–3232. [Google Scholar] [CrossRef]
- Freier, T. Biopolyesers in Tissue Engineering Applications. In Polymers for Regenerative Medicine; Springer: New York, NY, USA, 2006; Volume 203, pp. 1–61. [Google Scholar] [CrossRef]
- Ikejima, T.; Inoue, Y. Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan. Carbohydr. Polym. 2000, 41, 351–356. [Google Scholar] [CrossRef]
- Almustafa, W.; Schubert, D.W.; Grishchuk, S.; Sebastian, J.; Grun, G. Chemical Synthesis of Atactic Poly-3-hydroxybutyrate (a-P3HB) by Self-Polycondensation: Catalyst Screening and Characterization. Polymers 2024, 16, 1655. [Google Scholar] [CrossRef]
- Lejardi, A.; Etxeberria, A.; Meaurio, E.; Sarasua, J.-R. Novel poly(vinyl alcohol)-g-poly(hydroxy acid) copolymers: Synthesis and characterization. Polymer 2012, 53, 50–59. [Google Scholar] [CrossRef]
- Brtnicky, M.; Pecina, V.; Kucerik, J.; Hammerschmiedt, T.; Mustafa, A.; Kintl, A.; Sera, J.; Koutny, M.; Baltazar, T.; Holatko, J. Biodegradation of poly-3-hydroxybutyrate after soil inoculation with microbial consortium: Soil microbiome and plant responses to the changed environment. Sci. Total. Environ. 2024, 946, 174328. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gupta, N.S.; Bezek, L.B.; Linn, J.; Bejagam, K.K.; Banerjee, S.; Dumont, J.H.; Nam, S.Y.; Kang, H.W.; Park, C.H.; et al. Biodegradation Studies of Polyhydroxybutyrate and Polyhydroxybutyrate-co-Polyhydroxyvalerate Films in Soil. Int. J. Mol. Sci. 2023, 24, 7638. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Pralay, M. 12 Biodegradable nanocomposites based on poly(hydroxyalkanoates). In Nanocomposites with Biodegradable Polymers: Synthesis, Properties, and Future Perspectives, Monographs on the Physics and Chemistry of Materials; Mittal, V., Ed.; Oxford Academic: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef]
- Nikolaidis, A.K.; Achilias, D.S.; Karayannidis, G.P. Synthesis and Characterization of PMMA/Organomodified Montmorillonite Nanocomposites Prepared by in Situ Bulk Polymerization. Ind. Eng. Chem. Res. 2011, 50, 571–579. [Google Scholar] [CrossRef]
- Białkowska, A.; Krzykowska, B.; Zarzyka, I.; Bakar, M.; Sedlařík, V.; Kovářová, M.; Czerniecka-Kubicka, A. Polymer/Layered Clay/Polyurethane Nanocomposites: P3HB Hybrid Nanobiocomposites—Preparation and Properties Evaluation. Nanomaterials 2023, 13, 225. [Google Scholar] [CrossRef]
- Dayma, N.; Satapathy, B.K. Microstructural correlations to micromechanical properties of polyamide-6/low density polyethylene-grafted-maleic anhydride/nanoclay ternary nanocomposites. Mater. Des. 2012, 33, 510–522. [Google Scholar] [CrossRef]
- Loyens, W.; Jannasch, P.; Maurer, F.H.J. Effect of clay modifier and matrix molar mass on the structure and properties of poly(ethylene oxide)/Cloisite nanocomposites via melt-compounding. Polymer 2005, 46, 903–914. [Google Scholar] [CrossRef]
Share of P3HB [% by Mass] | Share of PU [% by Mass] | Share of Cloisite®30B [% by Mass] | Sample Designation |
---|---|---|---|
90 | 10 | 0 | 01 |
89 | 10 | 1 | 0101 |
88 | 10 | 2 | 0102 |
87 | 10 | 3 | 0103 |
Parameter | Value |
---|---|
Filling Rate [cm3/s] | 40 |
Filling pressure [bar] | 550–600 |
Packing pressure (profile) [bar] | 300–350 |
Packing time (profile) [s] | 23 |
Mold temperature [°C] | 40 |
Plasticization pressure [bar] | 150 |
Series | T1 [°C] | T2 [°C] | T3 [°C] | T4 [°C] | TNozzle [°C] |
---|---|---|---|---|---|
0 | 170 | 174 | 177 | 179 | 180 |
01 | 170 | 173 | 175 | 178 | 178 |
0101 | 168 | 172 | 176 | 177 | 177 |
0102 | 168 | 172 | 174 | 177 | 177 |
0103 | 168 | 172 | 174 | 177 | 177 |
Series | Et (s) [GPa] | ν (s) [-] | σy (s) [MPa] | σ0.01 (s) [MPa] | εy (s) [%] | σB (s) [MPa] | εB (s) [%] |
---|---|---|---|---|---|---|---|
0 | 3.73 (0.041) | 0.38 (0.006) | 38.43 (0.27) | – | 2.65 (0.085) | 35.66 (0.76) | 4.82 (0.61) |
01 | 2.91 (0.023) | 0.352 (0.017) | – | 23.66 (0.16) | – | 28.14 (0.97) | 1.67 (0.11) |
0101 | 2.76 (0.018) | 0.402 (0.009) | – | 20.2 (0.2) | – | 29.13 (0.45) | 2.97 (0.19) |
0102 | 2.86 (0.076) | 0.396 (0.007) | – | 21.69 (0.73) | – | 28.87 (1.12) | 2.51 (0.31) |
0103 | 2.82 (0.031) | 0.397 (0.007) | – | 21.03 (0.26) | – | 25.85 (0.87) | 2.05 (0.18) |
Series | Ef (s) [GPa] | σfM (s) [MPa] | εfM (s) [%] | σfB (s) [MPa] | εfB (s) [%] |
---|---|---|---|---|---|
0 | 3.75 (0.027) | 74.37 (0.81) | 3.75 (0.17) | 63.45 (1.63) | 4.25 (0.26) |
01 | 2.86 (0.162) | – | – | 37.94 (1.13) | 1.60 (0.14) |
0101 | 2.74 (0.059) | – | – | 50.31 (0.89) | 3.48 (0.11) |
0102 | 2.87 (0.059) | – | – | 49.77 (0.93) | 2.86 (0.14) |
0103 | 2.84 (0.018) | – | – | 50.15 (0.94) | 3.13 (0.14) |
Series | Impact Strength [J/cm2] |
---|---|
0 | 7.94 ± 0.3 |
01 | 9.23 ± 0.6 |
0101 | 16.88 ± 0.8 |
0102 | 15.53 ± 0.4 |
0103 | 12.26 ± 0.5 |
Material | Tensile Strength [MPa] | Elongation at Break [%] | Flexural Strength [MPa] | Impact Strength [J/cm2] |
---|---|---|---|---|
P3HB | 36 | 4.8 | 63.5 | 7.9 |
P3HB/PU (90/10) | 28 | 1.7 | 37.9 | 9.2 |
P3HB/Cloisite30B (95/5) [51] | 27 | 2.5 | - | - |
P3HB/PCL (75/25) [12] | 23 | 12.5 | 37.5 | - |
P3HB/Chitosan (90/10) [13] | 13 | 3 | - | - |
P3HB/PLA (75/25) [52] | 24 | 2.9 | - | |
P3HB/CNCs (98/2) [8] | 30 | 1.5 | - | |
P3HB/CNCs (96/4) [8] | 30 | 1.5 | - | |
P3HB [53] | 38.46 | 5.8 | - | 4.1 |
P3HB/sepiolite (99/1) [53] | 39.67 | 5.3 | - | 4.4 |
P3HB/sepiolite (98/2) [53] | 40.06 | 4.0 | - | 3.0 |
P3HB/sepiolite (97/3) [53] | 40.25 | 3.5 | - | 2.7 |
Series | C | H | O | Si | N | |||||
---|---|---|---|---|---|---|---|---|---|---|
Calcd | Determined | Calcd | Determined | Calcd | Determined | Calcd | Determined | Calcd | Determined | |
0 | 0.5581 | 0.5595 | 0.0698 | 0.0694 | 0.3724 | 0.3711 | 0 | - | 0 | - |
01 | 0.5616 | 0.5605 | 0.0724 | 0.07268 | 0.3623 | 0.3575 | 0 | - | 0.0094 | 0.0093 |
0101 | 0.5560 | 0.5550 | 0.0717 | 0.07195 | 0.3639 | 0.3642 | 0.0047 | - | 0.0094 | 0.0089 |
0102 | 0.5504 | 0.5504 | 0.0710 | 0.07101 | 0.3655 | 0.3702 | 0.0093 | - | 0.0095 | 0.0094 |
0103 | 0.5449 | 0.5466 | 0.0703 | 0.07098 | 0.3671 | 0.3725 | 0.0140 | - | 0.0096 | 0.0099 |
Series | Sample Mass [g] | TOD [mg/L] | BOD Measured [mg/L] | Sample BOD [mg/L] | Dt—Degree of Biodegradability [%] |
---|---|---|---|---|---|
0 | 0.25 | 49.84 | 60.00 | 31.50 | 63.21 |
01 | 0.22 | 57.54 | 86.30 | 57.80 | 100.00 |
0101 | 0.25 | 50.39 | 70.00 | 41.50 | 82.35 |
0102 | 0.19 | 65.99 | 80.00 | 51.50 | 78.04 |
0103 | 0.16 | 77.98 | 71.90 | 43.40 | 55.66 |
Sample | Ton (°C) | T5% (°C) | T10% (°C) | T50% (°C) | Tmax (°C) | Residue at 600 °C (% by Mass) | Tg (°C) | Tm(onset) (°C) |
---|---|---|---|---|---|---|---|---|
0 | 232.8 | 270.0 | 274.7 | 287.2 | 295.7 | 0.10 | 5.5 | 157.5 |
01 | 255.5 | 275.8 | 281.7 | 295.0 | 294.5 | 0.23 | −18.4 | 128.5 |
0101 | 263.0 | 285.1 | 291.5 | 307.3 | 293.5 | 1.67 | −19.1 | 136.3 |
0102 | 260.5 | 280.5 | 287.5 | 301.8 | 294.5 | 1.40 | −20.2 | 133.2 |
0103 | 253.7 | 286.3 | 292.2 | 306.2 | 294.3 | 1.90 | −20.8 | 131.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarzyka, I.; Krzykowska, B.; Hęclik, K.; Frącz, W.; Janowski, G.; Bąk, Ł.; Klepka, T.; Bieniaś, J.; Ostapiuk, M.; Tor-Świątek, A.; et al. Novel Research on Selected Mechanical and Environmental Properties of the Polyurethane-Based P3HB Nanobiocomposites. Materials 2025, 18, 2664. https://doi.org/10.3390/ma18112664
Zarzyka I, Krzykowska B, Hęclik K, Frącz W, Janowski G, Bąk Ł, Klepka T, Bieniaś J, Ostapiuk M, Tor-Świątek A, et al. Novel Research on Selected Mechanical and Environmental Properties of the Polyurethane-Based P3HB Nanobiocomposites. Materials. 2025; 18(11):2664. https://doi.org/10.3390/ma18112664
Chicago/Turabian StyleZarzyka, Iwona, Beata Krzykowska, Karol Hęclik, Wiesław Frącz, Grzegorz Janowski, Łukasz Bąk, Tomasz Klepka, Jarosław Bieniaś, Monika Ostapiuk, Aneta Tor-Świątek, and et al. 2025. "Novel Research on Selected Mechanical and Environmental Properties of the Polyurethane-Based P3HB Nanobiocomposites" Materials 18, no. 11: 2664. https://doi.org/10.3390/ma18112664
APA StyleZarzyka, I., Krzykowska, B., Hęclik, K., Frącz, W., Janowski, G., Bąk, Ł., Klepka, T., Bieniaś, J., Ostapiuk, M., Tor-Świątek, A., Droździel-Jurkiewicz, M., Paciorek-Sadowska, J., Borowicz, M., Tomczyk, A., Falkowska, A., & Kuciej, M. (2025). Novel Research on Selected Mechanical and Environmental Properties of the Polyurethane-Based P3HB Nanobiocomposites. Materials, 18(11), 2664. https://doi.org/10.3390/ma18112664