Insights into Localized Crystallization in the 3D-Cone Solar Evaporator for High-Salinity Desalination
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of Photothermal Evaporators
2.3. Characterization
2.4. Solar-Driven Water Evaporation and Simulated Brine Desalination Tests
2.5. Surface Temperature Measurement
3. Results
3.1. The Light-to-Heat Conversion Ability of AC/Cellulose
3.2. Solar-Driven Interfacial Evaporation of 3D-Cone Evaporator
3.3. Desalination Performance of the 3D-Cone Evaporator
3.3.1. Salt-Resistant Property of the 3D-Cone Evaporator
3.3.2. Desalination Mechanism Analysis of the 3D-Cone Evaporator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, M.G.; Frank, K.A.; Pokhrel, Y.; Dietz, T.; Liu, J. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sustain. 2021, 4, 1068–1075. [Google Scholar] [CrossRef]
- Huggins, X.; Gleeson, T.; Kummu, M.; Zipper, S.C.; Wada, Y.; Troy, T.J.; Famiglietti, J.S. Hotspots for social and ecological impacts from freshwater stress and storage loss. Nat. Commun. 2022, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Ibrahim, I.; Seo, D.H.; McDonagh, A.M.; Shon, H.K.; Tijing, L. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 2021, 500, 114853. [Google Scholar] [CrossRef]
- Tijing, L.D.; Woo, Y.C.; Choi, J.S.; Lee, S.; Kim, S.H.; Shon, H.K. Fouling and its control in membrane distillation—A review. J. Membr. Sci. 2015, 475, 215–244. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, L.; Qi, Z.; Luo, Z.; Li, X.; Bao, H. Large-scale implementation of solar interfacial desalination. Nat. Sustain. 2025, 8, 162–169. [Google Scholar] [CrossRef]
- Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449. [Google Scholar] [CrossRef]
- Song, Y.; Fang, S.; Xu, N.; Zhu, J. Solar-driven interfacial evaporation technologies for food, energy and water. Nat. Rev. Clean Technol. 2025, 1, 55–74. [Google Scholar] [CrossRef]
- Dang, C.; Cao, Y.; Nie, H.; Lang, W.; Zhang, J.; Xu, G.; Zhu, M. Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications. Nat. Water 2024, 2, 115–126. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Liu, P.; Fu, X.; Wang, J.; Cao, Y.; Tang, R.; Du, X.; Chen, W.; Li, S.; et al. Flatband lambda-Ti3O5 towards extraordinary solar steam generation. Nature 2023, 622, 499–506. [Google Scholar] [CrossRef]
- Brady, B.; Steenhof, V.; Nickel, B.; Blackburn, A.M.; Vehse, M.; Brolo, A.G. Plasmonic light-trapping concept for nanoabsorber photovoltaics. ACS Appl. Energy Mater. 2019, 2, 2255–2262. [Google Scholar] [CrossRef]
- Bae, K.; Kang, G.; Cho, S.K.; Park, W.; Kim, K.; Padilla, W.J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398. [Google Scholar] [CrossRef]
- Kazaz, O.; Abu-Nada, E. Innovative high-energy nanocomposite absorbers for superior solar-driven water desalination through broadband solar energy harvesting. Appl. Therm. Eng. 2025, 273, 126531. [Google Scholar] [CrossRef]
- Xu, N.; Hu, X.; Xu, W.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762. [Google Scholar] [CrossRef]
- Xu, N.; Li, J.; Wang, Y.; Fang, C.; Li, X.; Wang, Y.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S.; et al. A water lily–inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, M.; Prajapati, S.K. Use of reverse osmosis reject from drinking water plant for microalgal biomass production. Water Res. 2022, 210, 117989. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Ma, T.F.; Gao, B.Y.; Wang, H.L.; Yue, Q.Y.; Gao, Y. A feasibility study of hybrid forward osmosis-solar evaporation process using melamine sponge loaded with polypyrrole (PPy@MS) solar evaporator for desalination of brackish water. Sep. Purif. Technol. 2024, 343, 127074. [Google Scholar] [CrossRef]
- Yang, Z.; Li, D.; Zhu, Y.; Zhu, X.; Yu, W.; Yang, K.; Chen, B. Developing salt-rejecting evaporators for solar desalination: A critical review. Environ. Sci. Technol. 2024, 58, 8610–8630. [Google Scholar] [CrossRef]
- Sheng, M.H.; Yang, Y.W.; Bin, X.Q.; Zhao, S.H.; Pan, C.; Nawaz, F.; Que, W.X. Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy 2021, 89, 106468. [Google Scholar] [CrossRef]
- Li, L.; He, N.; Jiang, B.; Yu, K.; Zhang, Q.; Zhang, H.; Tang, D.; Song, Y. Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 2021, 31, 2104380. [Google Scholar] [CrossRef]
- Wu, L.; Dong, Z.; Cai, Z.; Ganapathy, T.; Fang, N.X.; Li, C.; Yu, C.; Zhang, Y.; Song, Y. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 2020, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cao, Y.; Tian, X.; Shen, Y.; Xiao, J.; Huang, W.; Wang, H.; Liu, Z. Dual-hydrophilic Janus evaporator for long-term and efficient bimode solar evaporation. Chem. Eng. J. 2023, 461, 141954. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Y.; Jing, D.; Yang, L.; Ji, J.; Li, X. Integrated Janus evaporator with an enhanced donnan effect and thermal localization for salt-tolerant solar desalination and thermal-to-electricity generation. ACS Appl. Mater. Interfaces 2023, 15, 49892–49901. [Google Scholar] [CrossRef]
- Chen, J.; Yin, J.L.; Li, B.; Ye, Z.; Liu, D.; Ding, D.; Qian, F.; Myung, N.V.; Zhang, Q.; Yin, Y. Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 2020, 14, 17419–17427. [Google Scholar] [CrossRef]
- Alam, M.K.; He, M.; Chen, W.; Wang, L.; Li, X.; Qin, X. Stable and salt-resistant Janus evaporator based on cellulose composite aerogels from waste cotton fabric. ACS Appl. Mater. Interfaces 2022, 14, 41114–41121. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Zheng, D.; Xu, X.; Bai, B.; Du, M. A polyelectrolyte hydrogel coated loofah sponge evaporator based on Donnan effect for highly efficient solar-driven desalination. Chem. Eng. J. 2023, 462, 142265. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Ma, L.; Xu, B.; Cong, H. Tailoring anionic solar evaporator with an enhanced Donnan effect for a highly effective salt resistance desalination and water purification. Sep. Purif. Technol. 2025, 353, 128325. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, Y.; Xi, Y.; Kong, X.; Ye, X.; Zhang, Z.; Qiu, C.; Xu, W.; Cheng, S.; Zhang, J.; et al. Highly charged hydrogel with enhanced donnan exclusion toward ammonium for efficient solar-driven water remediation. Chem. Eng. J. 2022, 430, 133019. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Qiu, Y.; Feng, H. High-efficiency wood-based evaporators for solar-driven interfacial evaporation. Sol. Energy 2022, 244, 322–330. [Google Scholar] [CrossRef]
- Hu, C.; Liu, J.; Li, C.; Zhao, M.; Wu, J.; Yu, Z.Z.; Li, X. Anisotropic MXene/Poly(vinyl alcohol) composite hydrogels with vertically oriented channels and modulated surface topography for efficient solar-driven water evaporation and purification. ACS Appl. Mater. Interfaces 2024, 16, 13060–13070. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.X.; Park, J.; Guan, W.X.; Zhao, Y.X.; Johnston, K.P.; Yu, G.H. Biomimetically assembled sponge-like hydrogels for efficient solar water purification. Adv. Funct. Mater. 2023, 33, 2303883. [Google Scholar] [CrossRef]
- Xia, Y.; Hou, Q.F.; Jubaer, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, H.Y.; Woo, M.W.; Zhang, L.; Gao, L.; et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 2019, 12, 1840–1847. [Google Scholar] [CrossRef]
- Wu, X.; Lin, D.; Zhou, H.; Han, L.; Li, J.; Ma, H.; Zhang, B. Salt crystallization on porous asymmetrical graphene oxide-based photothermal hydrogel-fabric unexpectedly enables continuous solar-powered hypersaline water distillation. Carbon 2025, 233, 119833. [Google Scholar] [CrossRef]
- Yang, Z.R.; Gui, Z.Y.; Xiang, D.P. A highly efficient melamine foam-based solar evaporator with double-photothermal-converting and fast water transportation. Desalination 2024, 577, 117396. [Google Scholar] [CrossRef]
- Kuang, Y.; Chen, C.; He, S.; Hitz, E.M.; Wang, Y.; Gan, W.; Mi, R.; Hu, L. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 2019, 31, 1900498. [Google Scholar] [CrossRef]
- Li, L.F.; Zhao, P.F.; Wang, Z.F.; Hu, Z.; Wang, D.; Zhang, Y.C.; Li, S.D.; Li, C.P. Photothermal Ti2O3/polyurethane/polyacrylamide foam with high solar-evaporation efficiency. Desalination 2023, 567, 117001. [Google Scholar] [CrossRef]
- Guan, W.; Guo, Y.; Yu, G. Carbon materials for solar water evaporation and desalination. Small 2021, 17, 2007176. [Google Scholar] [CrossRef]
- Pan, Y.J.; Xu, L.Q.; Sun, M.Y.; Shao, Y.X.; Chao, J.B.; Lv, B.Z.; Zhao, Y.Q. Economical, simple-to-prepare, and salt-resistant evaporator based on porous activated carbon for sustainable solar evaporation. Sol. RRL 2023, 7, 2300494. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Dong, W.; Zhang, L.; Kong, Q.; Wang, W. Efficient adsorption of sulfamethazine onto modified activated carbon: A plausible adsorption mechanism. Sci. Rep. 2017, 7, 12437. [Google Scholar] [CrossRef]
- Liu, C.; Gao, C.; Wang, W.; Wang, X.; Wang, Y.; Hu, W.; Rong, Y.; Hu, Y.; Guo, L.; Mei, A.; et al. Cellulose-based oxygen-rich activated carbon for printable mesoscopic perovskite solar cells. Sol. RRL 2021, 5, 2100333. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.B.; Zhao, G.Y.; Wang, L.X.; Jia, D.Z.; Yang, Y.Z.; Liu, X.G.; Wang, X.Z.; Qiu, J.S. High performance carbonized corncob-based 3D solar vapor steam generator enhanced by environmental energy. Carbon 2021, 179, 337–347. [Google Scholar] [CrossRef]
- Wu, X.; Gao, T.; Han, C.; Xu, J.; Owens, G.; Xu, H. A photothermal reservoir for highly efficient solar steam generation without bulk water. Sci. Bull. 2019, 64, 1625–1633. [Google Scholar] [CrossRef]
- Yu, M.Y.; Li, C.; Li, W.; Min, P. Reduced graphene oxide decorated cellulose acetate filter evaporators for highly efficient water evaporation and purification driven by solar energy and environmental energy. Adv. Sustain. Syst. 2022, 6, 2200023. [Google Scholar] [CrossRef]
- Vélez-Cordero, J.R.; Hernández-Cordero, J. Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers. Int. J. Therm. Sci. 2015, 96, 12–22. [Google Scholar] [CrossRef]
- Sun, L.; Liu, J.; Zhao, Y.; Xu, J.; Li, Y. Highly efficient solar steam generation via mass-produced carbon nanosheet frameworks. Carbon 2019, 145, 352–358. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Wu, P.; Zhao, J.; Lu, Y.; Yang, X.; Xu, H. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 31, 2102618. [Google Scholar] [CrossRef]
- Huang, T.; Dong, X.; Huang, W.; Song, J.; Zheng, Q.; Li, Z.; Han, Y.; Xie, E.; Wang, S.; Yang, Y.; et al. Construction of activated carbon/activated carbon fibre capacitive deionization composite electrode and its potential application in desalination of brackish water. Desalination 2025, 593, 118191. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Li, R.; Zhuo, S.; Jin, Y.; Shi, L.; Hong, S.; Chang, J.; Ong, C.; Wang, P. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 2018, 52, 11822–11830. [Google Scholar] [CrossRef]
- Huang, X.P.; Li, L.X.; Chen, K.; Zhang, J.P. Scalable superhydrophilic solar evaporators for long-term stable desalination, fresh water collection and salt collection by vertical salt deposition. ChemSusChem 2024, 17, e202400111. [Google Scholar] [CrossRef]
- He, Y.J.; Zhao, D.M.; Wang, H.; Gong, X.L.; Ding, M.C.; Duan, Z.Y.; Lin, T.H.; Wei, R.; Liu, J.Q.; Li, C.W. 3D graphene composite foams for efficient and stable solar desalination of high-salinity brine. Sol. RRL 2023, 7, 2300313. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Cai, J.; Liu, J.; Lv, B.; Chao, J.; Zhang, Q.; Zhao, Y. A stable bilayer polypyrrole-sorghum straw evaporator for efficient solar steam generation and desalination. Adv. Sustain. Syst. 2022, 6, 2100342. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhu, Y.J.; Wang, Z.Y.; Yu, H.P.; Xiong, Z.C. Salt-rejecting 3D cone flowing evaporator based on bilayer photothermal paper for high-performance solar seawater desalination. J. Colloid Interface Sci. 2024, 660, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Li, S.; Chen, X.Y.; Huang, Y.M.; Liu, B.; Yan, H.J.; Sheldon, B.W.; Li, Q.; Shi, C.M. 3D bridge-arch-structured dual-side evaporator for practical, all-weather water harvesting and desalination. J. Mater. Chem. A 2024, 12, 9574–9583. [Google Scholar] [CrossRef]
- Dong, X.; Li, H.; Gao, L.; Chen, C.; Shi, X.; Du, Y.; Deng, H. Janus Fibrous Mats Based Suspended Type Evaporator for Salt Resistant Solar Desalination and Salt Recovery. Small 2022, 18, 2107156. [Google Scholar] [CrossRef]
- Li, F.; Li, N.; Wang, S.; Qiao, L.; Yu, L.; Murto, P.; Xu, X. Self-Repairing and Damage-Tolerant Hydrogels for Efficient Solar-Powered Water Purification and Desalination. Adv. Funct. Mater. 2021, 31, 2104464. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, W.; Zhi, S.; Qi, X.; Chen, Y. Long Life and Salt Repellent Evaporator for Efficient Continuous Solar Desalination. Sol. RRL 2023, 7, 2300347. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, C.; Xu, N.; Yang, J.; Gao, G.; Ding, J. A Floating Integrated Solar Micro-Evaporator for Self-Cleaning Desalination and Organic Degradation. Adv. Funct. Mater. 2023, 33, 2214769. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Li, Y.; Zhao, J.; Jia, X.; Chao, J.; Lv, B.; Zhao, Y. Construction of Novel Biomass-Based Solar Evaporator with Asymmetric Dual-Layer Structure for Water Desalination. Adv. Sustain. Syst. 2021, 6, 2100274. [Google Scholar] [CrossRef]
- Shao, Q.; Luo, Y.; Cao, M.; Qiu, X.; Zheng, D. Lignin with enhanced photothermal performance for the preparation of a sustainable solar-driven double-layer biomass evaporator. Chem. Eng. J. 2023, 476, 146678. [Google Scholar] [CrossRef]
- Chen, S.; Sun, L.; Huang, Y.; Yang, D.; Zhou, M.; Zheng, D. Biochar-based interfacial evaporation materials derived from lignosulfonate for efficient desalination. Carbon Neutraliz. 2023, 2, 494–509. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, Y.; Bai, Y.; Han, J.; Cheng, W.; Han, G.; Wu, Q.; Jiang, J. A loofah-based all-day-round solar evaporator with phenolic lignin as the light-absorbing material for a highly efficient photothermal conversion. Chem. Eng. J. 2023, 477, 147298. [Google Scholar] [CrossRef]
- Zou, M.; Zhang, Y.; Cai, Z.; Li, C.; Sun, Z.; Yu, C.; Dong, Z.; Wu, L.; Song, Y. 3D Printing a Biomimetic Bridge-Arch Solar Evaporator for Eliminating Salt Accumulation with Desalination and Agricultural Applications. Adv. Mater. 2021, 33, e2102443. [Google Scholar] [CrossRef]
- Su, Y.; Liu, L.; Gao, X.; Yu, W.; Hong, Y.; Liu, C. A high-efficient and salt-rejecting 2D film for photothermal evaporation. iScience 2023, 26, 107347. [Google Scholar] [CrossRef]
- Li, L.; He, N.; Yang, S.; Zhang, Q.; Zhang, H.; Wang, B.; Dong, T.; Wang, H.; Jiang, B.; Tang, D. Strong tough hydrogel solar evaporator with wood skeleton construction enabling ultra-durable brine desalination. EcoMat 2022, 5, e12282. [Google Scholar] [CrossRef]
- Liu, H.; Chen, B.; Chen, Y.; Zhou, M.; Tian, F.; Li, Y.; Jiang, J.; Zhai, W. Bioinspired Self-Standing, Self-Floating 3D Solar Evaporators Breaking the Trade-Off between Salt Cycle and Heat Localization for Continuous Seawater Desalination. Adv. Mater. 2023, 35, e2301596. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Liao, Y.; Ji, L.; Zhao, R.; Zhu, D.; Hu, X.; Qin, G.; Rong, H.; Zhang, X. High-Entropy-Alloy-Nanoparticles Enabled Wood Evaporator for Efficient Photothermal Conversion and Sustainable Solar Desalination. Adv. Energy Mater. 2022, 12, 2203057. [Google Scholar] [CrossRef]
- Lam, D.V.; Nguyen, U.N.T.; Dung, D.T.; Kim, C.; Lim, M.; Kim, J.-H.; Lee, S.-M. Shape-transformable long-lasting superhydrophilic carbon cloth for sustainable solar vapor generation. Chem. Eng. J. 2024, 481, 148475. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Chen, W.; Yang, B.; Lv, B.; Yan, H.; Li, S.; Zuo, L. Insights into Localized Crystallization in the 3D-Cone Solar Evaporator for High-Salinity Desalination. Materials 2025, 18, 2610. https://doi.org/10.3390/ma18112610
Tang R, Chen W, Yang B, Lv B, Yan H, Li S, Zuo L. Insights into Localized Crystallization in the 3D-Cone Solar Evaporator for High-Salinity Desalination. Materials. 2025; 18(11):2610. https://doi.org/10.3390/ma18112610
Chicago/Turabian StyleTang, Ruolan, Wanqi Chen, Bo Yang, Banghe Lv, Haile Yan, Song Li, and Liang Zuo. 2025. "Insights into Localized Crystallization in the 3D-Cone Solar Evaporator for High-Salinity Desalination" Materials 18, no. 11: 2610. https://doi.org/10.3390/ma18112610
APA StyleTang, R., Chen, W., Yang, B., Lv, B., Yan, H., Li, S., & Zuo, L. (2025). Insights into Localized Crystallization in the 3D-Cone Solar Evaporator for High-Salinity Desalination. Materials, 18(11), 2610. https://doi.org/10.3390/ma18112610