Impact of Annealing Treatment on the Microstructure and Micromechanical Properties of Pb-Containing and Pb-Free Solder Alloys
Abstract
:1. Introduction
2. Experiment Procedures
3. Results and Discussion
3.1. Impacts of Annealing Treatments on the Microstructures
3.2. Impacts of Annealing Treatment on the Micro-Mechanical Properties
3.3. Mechanical Properties Variation in Individual Phase
4. Conclusions
- (1)
- Annealing significantly altered the microstructures of Sn63Pb37, SAC0307, and SAC305 solders. For SAC0307 and SAC305, grain size increased with higher annealing temperatures, while Sn63Pb37 exhibited less pronounced grain size changes. Both elevated temperature and extended duration promoted coarsening of the Pb-rich phase in Pb-containing solders and IMCs in Pb-free solders.
- (2)
- The hardness of different solder alloys responded differently to annealing. The hardness of Sn63Pb37 increased with rising annealing temperature and was insensitive to annealing duration. In contrast, the hardness of SAC0307 decreased with increasing temperature and extended duration, while that of SAC305 remained relatively stable.
- (3)
- The distinct hardness behaviors were attributed to the differing evolutions of the Sn matrix. In Sn63Pb37, the expansion of the Pb-rich phase limited dislocation motion, increasing the hardness of the Sn matrix. Conversely, in SAC0307, the enlarged Sn matrix provided more free volume for dislocation motion, reducing hardness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Gao, Y.; Liu, Z.-Q.; Suganuma, K. 3d Pyramid-Shape Ag Plating Assisted Interface Connection Growth of Sinter Micron-Sized Ag Paste. Scr. Mater. 2020, 179, 36–39. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Y.-B.; Liu, Z.-Q.; Liu, Y.; Sun, R. Low Pressure Cu-Cu Bonding Using Mod Ink-Modified Cu Particle Paste for Die-Attachment of Power Semiconductors. J. Mater. Sci. Mater. Electron. 2022, 33, 3576–3585. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, W.; Wang, X.; Li, M. Enhancement of High-Temperature Stability in Sintered Ag Joints on Bare Cu Substrates by Inducing the Transient Liquid Phase. Mater. Lett. 2021, 292, 129620. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, W.; Hu, S.; Li, M. Synthesis of Highly Antioxidant and Low-Temperature Sintering Cu-Ag Core–Shell Submicro-Particles for High-Power Density Electronic Packaging. Mater. Lett. 2021, 299, 129781. [Google Scholar] [CrossRef]
- Frear, D.R.; Ramanathan, L.N.; Jang, J.-W.; Owens, N.L. Emerging Reliability Challenges in Electronic Packaging. In Proceedings of the 2008 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008. [Google Scholar]
- Depiver, J.; Mallik, S.; Harmanto, D. Solder Joint Failures under Thermo-Mechanical Loading Conditions—A Review. Adv. Mater. Process. Technol. 2021, 7, 1–26. [Google Scholar] [CrossRef]
- Gouda, E.; Faquhi, I.; Kariri, S.; Qohal, M.; Kariri, Y. Structure, Electrical Resistivity, Oxidation and Corrosion Behavior of Tin-Lead Eutectic Alloy. Int. J. Mater. Sci. Appl. 2015, 4, 8–11. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.S. Kinetics of Intermetallic Formation at Sn-37pb/Cu Interface During Reflow Soldering. J. Electron. Mater. 2002, 31, 576. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Li, X.; Hu, X.; Lei, M. Growth Behavior of Imcs Layer of the Sn–35bi–1ag on Cu, Ni–P/Cu and Ni–Co–P/Cu Substrates During Aging. J. Mater. Sci. Mater. Electron. 2019, 30, 1519–1530. [Google Scholar] [CrossRef]
- Islam, R.; Wu, B.; Alam, M.; Chan, Y.; Jillek, W. Investigations on Microhardness of Sn–Zn Based Lead-Free Solder Alloys as Replacement of Sn–Pb Solder. J. Alloys Compd. 2005, 392, 149–158. [Google Scholar] [CrossRef]
- Ma, H.; Suhling, J.C. A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging. J. Mater. Sci. 2009, 44, 1141–1158. [Google Scholar] [CrossRef]
- Zhang, L.; Han, J.-G.; He, C.-W.; Guo, Y.-H. Reliability Behavior of Lead-Free Solder Joints in Electronic Components. J. Mater. Sci. Mater. Electron. 2013, 24, 172–190. [Google Scholar] [CrossRef]
- Fu, N.; Ahmed, S.; Suhling, J.C.; Lall, P. Visualization of Microstructural Evolution in Lead Free Solders During Isothermal Aging Using Time-Lapse Imagery. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017. [Google Scholar]
- Akkara, F.J.; Zhao, C.; Athamenh, R.; Su, S.; Abueed, M.; Hamasha, S.; Suhling, J.; Lall, P. Effect of Solder Sphere Alloys and Surface Finishes on the Reliability of Lead-Free Solder Joints in Accelerated Thermal Cycling. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018. [Google Scholar]
- Zhao, M.; Zhang, L.; Liu, Z.-Q.; Xiong, M.-Y.; Sun, L. Structure and Properties of Sn-Cu Lead-Free Solders in Electronics Packaging. Sci. Technol. Adv. Mater. 2019, 20, 421–444. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Lv, Z.; Hang, C.; Chen, H.; Li, M. A Novel Antioxidant and Low-Temperature Sn-Zn Solder Paste Based on Zn@ Sn Core-Shell Structure. Mater. Today Commun. 2022, 31, 103356. [Google Scholar] [CrossRef]
- Long, X.; Wang, S.; He, X.; Yao, Y. Annealing Optimization for Tin–Lead Eutectic Solder by Constitutive Experiment and Simulation. J. Mater. Res. 2017, 32, 3089–3099. [Google Scholar] [CrossRef]
- Xing, R.; Wang, C.; Jiang, W.; Zhu, Y.; Han, K.; Liu, X.; Hou, C. Atomic Scale Investigation of Interfacial Damage Initiation in Snpb Alloy: Structural Stability and Defect-Interface Interactions. J. Mater. Sci. 2024, 59, 11393–11404. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, W.; Han, K.; Liu, X.; Zhu, Y.; Xing, R.; Hou, C. Microscopic Damage in Eutectic Snpb Alloy: First-Principles Calculations and Experiments. Eng. Fail. Anal. 2024, 164, 11. [Google Scholar] [CrossRef]
- Amalu, E.; Lau, W.; Ekere, N.; Bhatti, R.; Mallik, S.; Otiaba, K.; Takyi, G. A Study of Snagcu Solder Paste Transfer Efficiency and Effects of Optimal Reflow Profile on Solder Deposits. Microelectron. Eng. 2011, 88, 1610–1617. [Google Scholar] [CrossRef]
- Hamada, N.; Uesugi, T.; Takigawa, Y.; Higashi, K. Effects of Zn Addition and Aging Treatment on Tensile Properties of Sn–Ag–Cu Alloys. J. Alloys Compd. 2012, 527, 226–232. [Google Scholar] [CrossRef]
- Liu, V.; Zou, Y.-S.; Chang, W.L.; Foo, X.Q.; Chen, Y.-J.; Chen, C.-M.; Chung, M.-H.; Gan, C.L. Solder Joint Reliability Performance Study and Shear Characterization of Low-Ag Sac Lead-Free Solders for Handheld Application. Mater. Sci. Semicond. Process. 2024, 179, 108489. [Google Scholar] [CrossRef]
- Cuddalorepatta, G.; Dasgupta, A. Multi-Scale Modeling of the Viscoplastic Response of as-Fabricated Microscale Pb-Free Sn3.0ag0.5cu Solder Interconnects. Acta Mater. 2010, 58, 5989–6001. [Google Scholar] [CrossRef]
- Wang, S.; Yao, Y.; Long, X. Size Effect on Microstructure and Tensile Properties of Sn3.0ag0.5cu Solder Joints. J. Mater. Sci. Mater. Electron. 2017, 28, 17682–17692. [Google Scholar] [CrossRef]
- Chowdhury, M.M.R.; Hoque, M.A.; Suhling, J.C.; Lall, P. Effects of Aging on the Damage Accumulation in Sac305 Lead Free Solders Subjected to Cyclic Loading. In Proceedings of the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 28–31 May 2019. [Google Scholar]
- Al Athamneh, R.; Hamasha, S. Fatigue Behavior of Sac-Bi and Sac305 Solder Joints with Aging. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 10, 611–620. [Google Scholar] [CrossRef]
- Long, X.; Wang, S.; Feng, Y.; Yao, Y.; Keer, L.M. Annealing Effect on Residual Stress of Sn-3.0 Ag-0.5 Cu Solder Measured by Nanoindentation and Constitutive Experiments. Mater. Sci. Eng. A 2017, 696, 90–95. [Google Scholar] [CrossRef]
- Hani, D.B.; Al Athamneh, R.; Hamasha, S. Effect of Aging Temperature on the Fatigue Resistance and Shear Strength of Sac305 Solder Joints. IEEE Trans. Device Mater. Reliab. 2022, 22, 239–247. [Google Scholar] [CrossRef]
- Cheng, F.; Gao, F.; Zhang, J.; Jin, W.; Xiao, X. Tensile Properties and Wettability of Sac0307 and Sac105 Low Ag Lead-Free Solder Alloys. J. Mater. Sci. 2011, 46, 3424–3429. [Google Scholar] [CrossRef]
- Che, F.; Zhu, W.; Poh, E.S.; Zhang, X. The Study of Mechanical Properties of Sn–Ag–Cu Lead-Free Solders with Different Ag Contents and Ni Doping under Different Strain Rates and Temperatures. J. Alloys Compd. 2010, 507, 215–224. [Google Scholar] [CrossRef]
- Wang, S.; Yao, Y.; Long, X. Critical Review of Size Effects on Microstructure and Mechanical Properties of Solder Joints for Electronic Packaging. Appl. Sci. 2019, 9, 227. [Google Scholar] [CrossRef]
- Aamir, M.; Muhammad, R.; Hanif, M.I.; Ahmed, N. Relationships between Microstructure and Mechanical Properties in High Sn Content Pb-Based and Pb-Free Solder Alloy after Thermal Aging. Int. J. Adv. Mater. Manuf. 2016, 1, 33–41. [Google Scholar]
- Wang, F.; Ma, X.; Qian, Y. Improvement of Microstructure and Interface Structure of Eutectic Sn–0.7 Cu Solder with Small Amount of Zn Addition. Scr. Mater. 2005, 53, 699–702. [Google Scholar] [CrossRef]
- Wang, Y.W.; Lin, Y.W.; Tu, C.T.; Kao, C.R. Effects of Minor Fe, Co, and Ni Additions on the Reaction between Snagcu Solder and Cu. J. Alloys Compd. 2009, 478, 121–127. [Google Scholar] [CrossRef]
- Sukhontapatipak, P.; Sungkhaphaitoon, P. The Influence of Nickel Addition on Properties of Sn–4.0zn–0.7cu Lead-Free Solder. Phys. Met. Metallogr. 2023, 124, 1597–1605. [Google Scholar] [CrossRef]
- Hu, T.; Li, S.; Li, Z.; Wu, G.; Zhu, P.; Dong, W.; Sun, Y.; Zhou, J.; Wu, B.; Zhao, B.; et al. Coupled Effect of Ag and in Addition on the Microstructure and Mechanical Properties of Sn–Bi Lead-Free Solder Alloy. J. Mater. Res. Technol. 2023, 26, 5902–5909. [Google Scholar] [CrossRef]
- Xu, B.; Huang, B.; Wang, C.; Wang, Q. Effect of Texture on the Grain-Size-Dependent Functional Properties of Niti Shape Memory Alloys and Texture Gradient Design: A Phase Field Study. Acta Mech. Solida Sin. 2023, 37, 10–32. [Google Scholar] [CrossRef]
- Long, X.; Zhang, X.; Tang, W.; Wang, S.; Feng, Y.; Chang, C. Calibration of a Constitutive Model from Tension and Nanoindentation for Lead-Free Solder. Micromachines 2018, 9, 608. [Google Scholar] [CrossRef]
- Fix, A.R.; López, G.A.; Brauer, I.; Nüchter, W.; Mittemeijer, E.J. Microstructural Development of Sn-Ag-Cu Solder Joints. J. Electron. Mater. 2005, 34, 137–142. [Google Scholar] [CrossRef]
- Hasnine, M.; Suhling, J.C.; Bozack, M.J. Effects of High Temperature Aging on the Microstructural Evolution and Mechanical Behavior of Sac305 Solder Joints Using Synchrotron X-Ray Microdiffraction and Nanoindentation. J. Mater. Sci. Mater. Electron. 2017, 28, 13496–13506. [Google Scholar] [CrossRef]
- Long, X.; Tang, W.; Wang, S.; Yao, Y. Annealing Effect to Constitutive Behavior of Sn-3.0ag-0.5cu Solder. J. Mater. Science. Mater. Electron. 2018, 29, 7177–7187. [Google Scholar] [CrossRef]
- Chen, W.-L.; Yu, C.-Y.; Ho, C.-Y.; Duh, J.-G. Effects of Thermal Annealing in the Post-Reflow Process on Microstructure, Tin Crystallography, and Impact Reliability of Sn-Ag-Cu Solder Joints. Mater. Sci. Eng. A Struct. Mater. Prop. Misrostruct. Process. 2014, 613, 193–200. [Google Scholar] [CrossRef]
- Fouassier, O.; Heintz, J.M.; Chazelas, J.; Geffroy, P.M.; Silvain, J.F. Microstructural Evolution and Mechanical Properties of Snagcu Alloys. J. Appl. Phys. 2006, 100, 2501. [Google Scholar] [CrossRef]
- Jung, K.; Conrad, H. Microstructure Coarsening During Static Annealing of 60sn40pb Solder Joints: I Stereology. J. Electron. Mater. 2001, 30, 1294–1302. [Google Scholar] [CrossRef]
- Jung, K.; Conrad, H. Microstructure Coarsening During Static Annealing of 60sn40pb Solder Joints: II Eutectic Coarsening Kinetics. J. Electron. Mater. 2001, 30, 1303–1307. [Google Scholar] [CrossRef]
- Ramli, M.I.I.; Salleh, M.A.A.M.; Said, R.M.; Abdullah, M.M.A.B.; Halin, D.S.C.; Saud, N.; Nabiałek, M. The Effect of Thermal Annealing on the Microstructure and Mechanical Properties of Sn-0.7cu-Xzn Solder Joint. Metals 2021, 11, 380. [Google Scholar] [CrossRef]
- Wei, C.; Liu, Y.; Yu, L.; Xu, R.; Yang, K.; Gao, Z. Effects of Thermal Treatment on Microstructure And Microhardness of Rapidly Solidified Sn–Ag–Zn Eutectic Solder. Appl. Phys. A 2009, 95, 409–413. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, G.; Liu, T.; Wang, W. Determination of Elastoplastic Properties of 2024 Aluminum Alloy Using Deep Learning and Instrumented Nanoindentation Experiment. Acta Mech. Solida Sin. 2023, 36, 327–339. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, L.; Huang, M.; Zhu, Y.; Li, Z. Hydrogen Effect on the Nanohardness in the Vicinity of Grain Boundary: Experiment and Theory. Extrem. Mech. Lett. 2021, 48, 101426. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, L.; Huang, M.; Zhu, Y.; Li, Z. Effect of Hydrogen on Dislocation Nucleation and Motion: Nanoindentation Experiment and Discrete Dislocation Dynamics Simulation. Acta Mech. Solida Sin. 2022, 35, 1–14. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Sneddon, I.N. The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Arfaei, B.; Kim, N.; Cotts, E. Dependence of Sn Grain Morphology of Sn-Ag-Cu Solder on Solidification Temperature. J. Electron. Mater. 2012, 41, 362–374. [Google Scholar] [CrossRef]
- Wendt, M.; Plöβl, A.; Weimar, A.; Zenger, M.; Dilger, K. Investigation of the Influence of Annealing Temperature on the Morphology and Growth Kinetic of Ni3sn4 in the Ni-Sn-Solder System. J. Mater. Sci. Chem. Eng. 2016, 4, 116–130. [Google Scholar] [CrossRef]
- ASTM E2627-13(2019); Standard Practice for Determining Average Grain Size Using Electron Backscatter Diffraction (Ebsd) in Fully Recrystallized Polycrystalline Materials. ASTM: West Conshohocken, PA, USA, 2013.
- Creuziger, A.; Vaudin, M. Report on Vamas Round Robin of Iso 13067: Microbeam Analysis-Electron Backscatter Diffraction-Measurement of Average Grain Size; Technical Report NISTIR 7814; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Wang, Z.; Wang, H.; Chen, L.; Huang, X. Dually-Refined Grain and Precipitate Microstructure of Atf-Fecral Alloy by a Two-Step Annealing Process to Separate the Recrystallization from Precipitation. Mater. Sci. Eng. A 2024, 898, 146346. [Google Scholar] [CrossRef]
- Tamizi, M.; Movahedi, M.; Kokabi, A.; Miyashita, Y. Cobalt-Graphene Nanosheets Enhanced Sn–0.3 Ag–0.7 Cu Composite Solder: Study on Microstructure, Crystal Orientation Relations and Mechanical Properties. Mater. Sci. Eng. A 2024, 894, 146199. [Google Scholar] [CrossRef]
- Tan, A.T.; Tan, A.W.; Yusof, F. Evolution of Microstructure and Mechanical Properties of Cu/Sac305/Cu Solder Joints under the Influence of Low Ultrasonic Power. J. Alloys Compd. 2017, 705, 188–197. [Google Scholar] [CrossRef]
- Yusoff, W.Y.W.; Ismail, N.; Safee, N.S.; Ismail, A.; Jalar, A.; Abu Bakar, M. Correlation of Microstructural Evolution and Hardness Properties of 99.0 Sn-0.3 Ag-0.7 Cu (Sac0307) Lead-Free Solder under Blast Wave Condition. Solder. Surf. Mt. Technol. 2019, 31, 102–108. [Google Scholar] [CrossRef]
Type of Sample | Proportion of IMCs (%) |
---|---|
125 °C—6 h | 32.3 |
125 °C—12 h | 25.6 |
125 °C—24 h | 11.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Wang, C.; Han, K.; Zhu, Y.; Hou, C.; Xing, R. Impact of Annealing Treatment on the Microstructure and Micromechanical Properties of Pb-Containing and Pb-Free Solder Alloys. Materials 2025, 18, 2596. https://doi.org/10.3390/ma18112596
Jiang W, Wang C, Han K, Zhu Y, Hou C, Xing R. Impact of Annealing Treatment on the Microstructure and Micromechanical Properties of Pb-Containing and Pb-Free Solder Alloys. Materials. 2025; 18(11):2596. https://doi.org/10.3390/ma18112596
Chicago/Turabian StyleJiang, Wen, Changwei Wang, Kangning Han, Yaxin Zhu, Chuantao Hou, and Ruisi Xing. 2025. "Impact of Annealing Treatment on the Microstructure and Micromechanical Properties of Pb-Containing and Pb-Free Solder Alloys" Materials 18, no. 11: 2596. https://doi.org/10.3390/ma18112596
APA StyleJiang, W., Wang, C., Han, K., Zhu, Y., Hou, C., & Xing, R. (2025). Impact of Annealing Treatment on the Microstructure and Micromechanical Properties of Pb-Containing and Pb-Free Solder Alloys. Materials, 18(11), 2596. https://doi.org/10.3390/ma18112596