Influence of Abutment Geometry on Zirconia Crown Retention: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Scanning and Crown Fabrication
2.3. Cementation
2.4. Pull out Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brägger, U.; Karoussis, I.; Persson, R.; Pjetursson, B.; Salvi, G.; Lang, N.P. Technical and biological complications/failures with single crowns and fixed partial dentures on implants: A 10-year prospective cohort study. Clin. Oral Implants Res. 2005, 16, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Aneksomboonpol, P.; Duangthip, D.; Chooruang, K.; Ruangrit, K.; Kanchanavasita, W. Surface structure characteristics of dental implants and their potential changes following installation: A literature review. J. Korean Assoc. Oral Maxillofac. Surg. 2023, 49, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, G.O.; Benic, G.I.; Eckert, S.E.; Papaspyridakos, P.; Schimmel, M.; Schrott, A.; Weber, H.P. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin. Oral Implants Res. 2018, 29, 106–134. [Google Scholar] [CrossRef] [PubMed]
- Theoharidou, A.; Morneburg, T.; Kiliaridis, S.; Brägger, U. Abutment screw loosening in single-implant restorations: A systematic review. Int. J. Oral Maxillofac. Implants 2008, 23, 681–690. [Google Scholar]
- Ionescu, R.N.; Amariei, C.; Gheorghiu, I.M. Prosthetic Materials Used for Implant-Supported Restorations and Their Biochemical Oral Interactions: A Narrative Review. Materials 2022, 15, 1016. [Google Scholar] [CrossRef]
- Pjetursson, B.E.; Zarauz, C.; Zwahlen, M.; Li, J.; Sailer, I. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clin. Oral Implants Res. 2018, 29, 199–214. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Harouny, M.; Basudan, S.; Alfawaz, Y.F.; Alzahrani, A.H.; Sghaireen, M.G. Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules 2022, 27, 1699. [Google Scholar] [CrossRef]
- Singh, P.V.; Upadhyaya, V.; Sharma, M.; Sharma, A.; Sachdeva, S.; Upadhyaya, S. Zirconia Facts and Perspectives for Biomaterials in Dental Implantology. Cureus 2023, 15, e46828. [Google Scholar] [CrossRef]
- Hosseini, M.; Worsaae, N.; Gotfredsen, K. Survival Rate of Implant-Supported, Single-Tooth Restorations Based on Zirconia or Metal Abutment in Patients with Tooth Agenesis: A 5-Years Prospective Clinical Study. J. Evid.-Based Dent. Pract. 2024, 24, 101970. [Google Scholar] [CrossRef]
- Hamed, M.T.; Abdalla, A.I.; Younes, F. A Systematic Review of Screw versus Cement-Retained Fixed Implant Supported Reconstructions. Clin. Cosmet. Investig. Dent. 2020, 12, 9–16. [Google Scholar] [CrossRef]
- Reda, R.; Zanza, A.; Cicconetti, A.; Bhandi, S.; Guarnieri, R.; Testarelli, L.; Di Nardo, D. A Systematic Review of Cementation Techniques to Minimize Cement Excess in Cement-Retained Implant Restorations. Methods Protoc. 2022, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Rokaya, D.; Srimaneepong, V.; Sapkota, J.; Qin, J.; Siraleartmukul, K. Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [CrossRef]
- Lopes, A.C.O.; Randi, A.; Dias, D.R.S.; Santiago Júnior, J.F.; Pellizzer, E.P.; Goiato, M.C. The Effect of CAD/CAM Crown Material and Cement Type on Retention to Implant Abutments. J. Prosthodont. 2019, 28, e552–e556. [Google Scholar] [CrossRef]
- Chee, W.; Felton, D.A.; Johnson, P.F.; Sullivan, D.Y. Cemented versus screw-retained implant prostheses: Which is better? Int. J. Oral Maxillofac. Implants 1999, 14, 137–141. [Google Scholar] [PubMed]
- Thoma, D.S.; Naenni, N.; Benic, G.I.; Hammerle, C.H.F.; Pjetursson, B.E.; Jung, R.E. Early histological, microbiological, radiological, and clinical response to cemented and screw-retained all-ceramic single crowns. Clin. Oral Implants Res. 2018, 29, 996–1006. [Google Scholar] [CrossRef]
- Silva, C.E.P.; Costa, A.P.; Ervolino, E.; Pellizzer, E.P.; Santiago Junior, J.F.; Goiato, M.C. Effect of CAD/CAM Abutment Height and Cement Type on the Retention of ZirconiaCrowns. Implant Dent. 2018, 27, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, E.T.; Souza, R.O.A.; Mazaro, J.V.Q.; Kimpara, E.T.; Adabo, G.L.; Bottino, M.A. Retention of zirconia crowns to Ti-base abutments: Effect of luting protocol, abutment treatment and autoclave sterilization. J. Prosthodont. Res. 2021, 65, 171–175. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Borges, A.L.S.; Bottino, M.A.; Nishioka, R.S. Different combinations of CAD/CAM materials on the biomechanical behavior of a two-piece prosthetic solution. Int. J. Comput. Dent. 2019, 22, 171–176. [Google Scholar]
- Moreno, A.L.M.; Menezes, L.M.; Delben, J.A.; Melo, R.M. Abutment on Titanium-Base Hybrid Implant: A Literature Review. Eur. J. Dent. 2023, 17, 261–269. [Google Scholar] [CrossRef]
- Al-Thobity, A.M. Titanium Base Abutments in Implant Prosthodontics: A Literature Review. Eur. J. Dent. 2022, 16, 49–55. [Google Scholar] [CrossRef]
- Nouh, I.; Abdel-Halim, M.; Aly, A.M.; Shoukry, T. Mechanical behavior of posterior all-ceramic hybrid-abutment-crowns versus hybrid-abutments with separate crowns—A laboratory study. Clin. Oral Implants Res. 2019, 30, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, O.; Lee, S.J.; Lee, J.D. Influence of varying titanium base abutment heights on retention of zirconia restorations: An in vitro study. J. Prosthet. Dent. 2023, 130, 604.e1–604.e5. [Google Scholar] [CrossRef]
- Lewinstein, I.; Fuhrer, N.; Chweidan, H.; Matalon, S. An in vitro assessment of circumferential grooves on the retention of cement-retained implant-supported crowns. J. Prosthet. Dent. 2011, 106, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Safari, S.; Habibzadeh, S.; Ghodsi, S.; Ebrahimi, S.F. Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. J. Adv. Prosthodont. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Ebert, A.; Hedderich, J.; Kern, M. Retention of zirconia ceramic copings bonded to titanium abutments. Int. J. Oral Maxillofac. Implants 2007, 22, 921–927. [Google Scholar]
- Mehl, C.; Harder, S.; Wolfart, S.; Kern, M. Influence of cement film thickness on the retention of implant-retained crowns. J. Prosthodont. 2013, 22, 618–625. [Google Scholar] [CrossRef]
- Alseddiek, A.; Al-Zordk, W.; Attia, A. Retention of hybrid-abutment-crowns with offset implant placement: Influence of Crown materials and Ti-base height. BMC Oral Health 2023, 23, 784. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, F.; Schmidlin, P.R.; Stawarczyk, B. Retention Forces of Monolithic CAD/CAM Crowns Adhesively Cemented to Titanium Base Abutments—Effect of Saliva Contamination Followed by Cleaning of the Titanium Bond Surface. Materials 2021, 14, 3375. [Google Scholar] [CrossRef]
- Kelly, J.; Rungruanganunt, P. Fatigue Behavior of Computer-Aided Design/Computer-Assisted Manufacture Ceramic Abutments as a Function of Design and Ceramics Processing. Int. J. Oral Maxillofac. Implants 2016, 31, 601–609. [Google Scholar] [CrossRef]
- Choi, K.H.; Kim, H.W.; Kim, M.J.; Han, J.S.; Yeo, I.S.L. Influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with a lingual slot. J. Adv. Prosthodont. 2018, 10, 381–387. [Google Scholar] [CrossRef]
- Jørgensen, K.D. The relationship between retention and convergence angle in cemented veneer crowns. Acta Odontol. Scand. 1955, 13, 35–40. [Google Scholar] [PubMed]
- Bernal, G.; Okamura, M.; Muñoz, C.A. The effects of abutment taper, length and cement type on resistance to dislodgement of cement-retained, implant-supported restorations. J. Prosthodont. 2003, 12, 111–115. [Google Scholar] [CrossRef] [PubMed]
Oneway ANOVA | |||||
---|---|---|---|---|---|
Data | Sum of Squares | df | Mean Square | F | Sig. |
Between groups | 291,448.65 | 2 | 145,624.32 | 28.504 | <0.001 |
Group | Mean Difference | Standard Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Group (B–A) | 165.55 | 22.61 | <0.001 | 111.14 | 219.96 |
Group (B–C) | 118.86 | 22.61 | <0.001 | 64.45 | 173.27 |
Group (A–B) | 46.68 | 22.61 | 0.106 | 7.72 | 101.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davaatseren, B.; Kwon, J.-S.; Eom, S.; Lee, J.H. Influence of Abutment Geometry on Zirconia Crown Retention: An In Vitro Study. Materials 2025, 18, 2469. https://doi.org/10.3390/ma18112469
Davaatseren B, Kwon J-S, Eom S, Lee JH. Influence of Abutment Geometry on Zirconia Crown Retention: An In Vitro Study. Materials. 2025; 18(11):2469. https://doi.org/10.3390/ma18112469
Chicago/Turabian StyleDavaatseren, Bayandelger, Jae-Sung Kwon, Sangho Eom, and Jae Hoon Lee. 2025. "Influence of Abutment Geometry on Zirconia Crown Retention: An In Vitro Study" Materials 18, no. 11: 2469. https://doi.org/10.3390/ma18112469
APA StyleDavaatseren, B., Kwon, J.-S., Eom, S., & Lee, J. H. (2025). Influence of Abutment Geometry on Zirconia Crown Retention: An In Vitro Study. Materials, 18(11), 2469. https://doi.org/10.3390/ma18112469