Modification of Natural and Synthetic Zeolites for CO2 Capture: Unrevealing the Role of the Compensation Cations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Physicochemical Modification of Zeolites
2.2.1. Chemical Modifications by Ion Exchange Process
2.2.2. Thermal Outgassing of Chemically Modified Zeolites
2.3. Characterization of the Adsorbent Materials
2.3.1. Porosimetry Measurements
2.3.2. Scanning Electron Microscopy
2.3.3. Thermogravimetric Measurements
2.4. Determination of the Maximum CO2 Adsorption Capacity
2.4.1. Experimental CO2 Isotherms
2.4.2. Isotherm Modelling
2.5. Determination of the Optimised Modification Conditions for Natural Zeolites
3. Results and Discussion
3.1. On the Influence of the Compensating Cation on the CO2 Adsorption in Synthetic Zeolite
3.1.1. Physical, Chemical and Surface Characterization of Raw and Modified Synthetic Zeolites
3.1.2. On the Determination of the Temperature for the Outgassing Procedure Using Thermogravimetric Information
3.1.3. Assessing the Role of the Zeolite Compensation Cations for CO2 Adsorption
3.2. On the Development of a CO2 Adsorbent Material Based on Natural Zeolite
3.2.1. Physicochemical and Surface Characterization of Raw and Modified Natural Zeolite Samples
3.2.2. CO2 Adsorption Isotherms onto Raw and Modified Natural Zeolites
3.2.3. Finding the Optimized Conditions to Modify Natural Zeolites for CO2 Capture: SRM Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BET | Brunauer–Emmett–Teller |
CCD | Central Composite Design |
CCS | Carbon Capture and Storage |
DSC | Differential Scanning Calorimeter |
NZ | Natural Zeolite |
SEM | Scanning Electron Microscopy |
SRM | Surface Response Methodology |
SZ | Synthetic Zeolite |
TGA | Thermogravimetric Analysis |
References
- Wei, C.; Wang, M.; Fu, Q.; Dai, C.; Huang, R.; Bao, Q. Temporal Characteristics of Greenhouse Gases (CO2 and CH4) in the Megacity Shanghai, China: Association with Air Pollutants and Meteorological Conditions. Atmos. Res. 2020, 235, 104759. [Google Scholar] [CrossRef]
- Dinda, S.; Murge, P.; Chakravarthy Paruchuri, B. A Study on Zeolite-Based Adsorbents for CO2 Capture. Bull. Mater. Sci. 2019, 42, 240. [Google Scholar] [CrossRef]
- Olivier, J.G.J.; Peters, J.A.H.W. Trends in global CO2 and total greenhouse gas emissions. In 2020 Report Trends in Global CO2 and Total Greenhouse Gas Emissions: 2020 Report; PBL Netherlands Environmental Assessment Agency: Den Haag, The Netherlands, 2020. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability; Cambridge University Press: Singapore, 2023. [Google Scholar]
- Swiss Re Partnering for Progress Financial Highlights. Available online: https://www.swissre.com/dam/jcr:59cd3668-b9ef-4746-b9d3-132139c461a6/ar-2021-shareholders-letter-doc-en.pdf (accessed on 19 April 2025).
- Murge, P.; Dinda, S.; Roy, S. Zeolite-Based Sorbent for CO2 Capture: Preparation and Performance Evaluation. Langmuir 2019, 35, 14751–14760. [Google Scholar] [CrossRef] [PubMed]
- Gunawardene, O.H.P.; Gunathilake, C.A.; Vikrant, K.; Amaraweera, S.M. Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. Atmosphere 2022, 13, 397. [Google Scholar] [CrossRef]
- Loachamin, D.; Casierra, J.; Calva, V.; Palma-Cando, A.; Ávila, E.E.; Ricaurte, M. Amine-Based Solvents and Additives to Improve the CO2 Capture Processes: A Review. ChemEngineering 2024, 8, 129. [Google Scholar] [CrossRef]
- Allangawi, A.; Alzaimoor, E.F.H.; Shanaah, H.H.; Mohammed, H.A.; Saqer, H.; El-Fattah, A.A.; Kamel, A.H. Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C 2023, 9, 17. [Google Scholar] [CrossRef]
- Davarpanah, E.; Armandi, M.; Hernández, S.; Fino, D.; Arletti, R.; Bensaid, S.; Piumetti, M. CO2 Capture on Natural Zeolite Clinoptilolite: Effect of Temperature and Role of the Adsorption Sites. J. Environ. Manag. 2020, 275, 111229. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Mujčin, M.; Abou-Zeid, C.; Tezel, F.H. Cation Exchange Modification of Clinoptilolite –Thermodynamic Effects on Adsorption Separations of Carbon Dioxide, Methane, and Nitrogen. Microporous Mesoporous Mater. 2019, 274, 327–341. [Google Scholar] [CrossRef]
- Espinal, L.; Poster, D.L.; Wong-Ng, W.; Allen, A.J.; Green, M.L. Measurement, Standards, and Data Needs for CO2 Capture Materials: A Critical Review. Environ. Sci. Technol. 2013, 47, 11960–11975. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Masoudi Soltani, S. Influence of Surface Modification on Selective CO2 Adsorption: A Technical Review on Mechanisms and Methods. Microporous Mesoporous Mater. 2021, 312, 110751. [Google Scholar] [CrossRef]
- Bayrakdar Ates, E. Exploring the Impact of NaOH Pre-Treatment for H2 and CO2 Adsorption on Clinoptilolite. Int. J. Hydrogen Energy 2024, 50, 990–1003. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Y.; Cao, L.; Cao, P.; Zhou, C.; Gu, S. Freeze–Thaw Cycle Durability and Mechanism Analysis of Zeolite Powder-Modified Recycled Concrete. Materials 2024, 17, 2671. [Google Scholar] [CrossRef]
- Solińska, A.; Bajda, T. Modified Zeolite as a Sorbent for Removal of Contaminants from Wet Flue Gas Desulphurization Wastewater. Chemosphere 2022, 286, 131772. [Google Scholar] [CrossRef]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
- Walton, K.S.; Abney, M.B.; LeVan, M.D. CO2 Adsorption in y and X Zeolites Modified by Alkali Metal Cation Exchange. Microporous Mesoporous Mater. 2006, 91, 78–84. [Google Scholar] [CrossRef]
- Rao, F.; Liu, M.; Liu, C.; Deng, W.; Huang, R.; Liao, C.; Qi, T.; Hu, G. Synthesis of Binder-Free Pelletized Y Zeolite for CO2 Capture. Carbon Capture Sci. Technol. 2024, 10, 100166. [Google Scholar] [CrossRef]
- Drenchev, N.L.; Ivanova, E.Z.; Mihaylov, M.Y.; Aleksandrov, H.A.; Vayssilov, G.N.; Hadjiivanov, K.I. One Ca2+ Site in CaNaY Zeolite Can Attach Three CO2 Molecules. J. Phys. Chem. Lett. 2023, 14, 1564–1569. [Google Scholar] [CrossRef]
- Henrotin, A.; Heymans, N.; Duprez, M.E.; Mouchaham, G.; Serre, C.; Wong, D.; Robinson, R.; Mulrooney, D.; Casaban, J.; De Weireld, G. Lab-Scale Pilot for CO2 Capture Vacuum Pressure Swing Adsorption: MIL-160(Al) vs Zeolite 13X. Carbon Capture Sci. Technol. 2024, 12, 100224. [Google Scholar] [CrossRef]
- Erguvan, M.; Amini, S. Parametric Investigation of CO2 Desorption of Zeolite 13X Under Microwave Condition. Carbon Capture Sci. Technol. 2024, 11, 100189. [Google Scholar] [CrossRef]
- Tao, Z.; Tian, Y.; Hanif, A.; Chan, V.; Gu, Q.; Shang, J. Metal Cation-Exchanged LTA Zeolites for CO2/N2 and CO2/CH4 Separation: The Roles of Gas-Framework and Gas-Cation Interactions. Carbon Capture Sci. Technol. 2023, 8, 100126. [Google Scholar] [CrossRef]
- Athayde, D.D.; dos Santos, G.M.; de Faria, A.C.B.; de Lima Ribeiro, C.; Aiube, C.M.; Ladislau, D.A.A.; Paulo da Silva, E.; de Sousa Lima, L.F.; de Souza, R.N.; Pereira da Silva, S.L.; et al. Investigation of the Reaction Time and Hydrothermal Synthesis Route on the SSZ-13 Zeolite Particle Crystallization and CO2 Adsorption. Microporous Mesoporous Mater. 2025, 384, 113428. [Google Scholar] [CrossRef]
- Kencana, K.S.; Hong, S.B. Nanocrystalline Sodium Mordenite as an Efficient Low-Concentration CO2 Adsorbent. Sep. Purif. Technol. 2024, 350, 128018. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Wei, J.; Cui, X.; Wan, C.; Liu, M.; Bai, S.; Sun, J.; Wang, J. Performance Evaluation of Bimetallic Ion Exchanged Clinoptilolite for Potential Equilibrium and Kinetic Adsorption Separations of CO2 from CO2/CH4 Mixture. Sep. Purif. Technol. 2024, 331, 125563. [Google Scholar] [CrossRef]
- Wahono, S.K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-Chemical Modification of Natural Mordenite-Clinoptilolite Zeolites and Their Enhanced CO2 Adsorption Capacity. Microporous Mesoporous Mater. 2020, 294, 109871. [Google Scholar] [CrossRef]
- Cabana, N.C.; Serra, R.M.; Boix, A.V.; Bolcatto, P.G. SLAFES XXIII CO2 Adsorption on Cs-and Na-Doped Mordenites. Mater. Today Proc. 2019, 14, 185–188. [Google Scholar] [CrossRef]
- Calleja, G.; Pau, J.; Calles, J.A. Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene, and Propane on ZSM-5 Zeolites with Different Si/Al Ratios. J. Chem. Eng. Data 1998, 43, 994–1003. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.H.; Kim, J.T.; Suh, J.K.; Lee, J.M.; Lee, C.H. Adsorption Equilibria of CO2 on Zeolite 13X and Zeolite X/Activated Carbon Composite. J. Chem. Eng. Data 2002, 47, 1237–1242. [Google Scholar] [CrossRef]
- Boscherini, M.; Miccio, F.; Papa, E.; Medri, V.; Landi, E.; Doghieri, F.; Minelli, M. The Relevance of Thermal Effects during CO2 Adsorption and Regeneration in a Geopolymer-Zeolite Composite: Experimental and Modelling Insights. Chem. Eng. J. 2021, 408, 127315. [Google Scholar] [CrossRef]
- Hadi, E.; ba Karim Ghani, W.; Azlina, W. High-Pressure CO2 Adsorption onto NaX Zeolite: Effect of Li+, K+, Mg2+, and Zn2+ and Equilibrium Isotherms Study. Iran. J. Chem. Chem. Eng. 2021, 40, 1195–1215. [Google Scholar]
- Hauchhum, L.; Mahanta, P. Carbon Dioxide Adsorption on Zeolites and Activated Carbon by Pressure Swing Adsorption in a Fixed Bed. Int. J. Energy Environ. Eng. 2014, 5, 349–356. [Google Scholar] [CrossRef]
- Hernández-Huesca, R.; Díaz, L.; Aguilar-Armenta, G. Adsorption Equilibria and Kinetics of CO2, CH4 and N2 in Natural Zeolites. Sep. Purif. Technol. 1999, 15, 163–173. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, M.; Niquette, P.; Mimeault, M.; Hausler, R. Advances in Principal Factors Influencing Carbon Dioxide Adsorption on Zeolites. Sci. Technol. Adv. Mater. 2008, 9, 13007. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.J. A Review on Solid Adsorbents for Carbon Dioxide Capture. J. Ind. Eng. Chem. 2015, 23, 1–11. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. Modification and Functionalization of Zeolites to Improve the Efficiency of CO2 Adsorption: A Review. Case Stud. Chem. Environ. Eng. 2024, 9, 100564. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, B.; Xu, L.; Chen, M.; Wu, C.-E.; Qiu, J.; Cheng, G.; Wang, N.; Xu, J.; Hu, X. CO2 Methanation over the Ni-Based Catalysts Supported on the Hollow ZSM-5 Zeolites: Effects of the Hollow Structure and Alkaline Treatment. Fuel 2023, 334, 126783. [Google Scholar] [CrossRef]
- Spataru, D.; Canastreiro, D.; Świrk Da Costa, K.; Quindimil, A.; Lopes, J.M.; Da Costa, P.; Henriques, C.; Bacariza, C. Doping Ni/USY Zeolite Catalysts with Transition Metals for CO2 Methanation. Int. J. Hydrogen Energy 2024, 53, 468–481. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Z.; Chen, T.; Hu, L.; Yang, S.; Kawi, S. State-of-Art Designs and Synthesis of Zeolite Membranes for CO2 Capture. Carbon Capture Sci. Technol. 2022, 5, 100073. [Google Scholar] [CrossRef]
- United Nation. Edición Especial 2023 Informe de Los Objetivos de Desarrollo Sostenible; United Nation: Manhattan, NY, USA, 2023. [Google Scholar]
- Król, M. Natural vs. Synthetic Zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Gęsikiewicz-Puchalska, A.; Zgrzebnicki, M.; Michalkiewicz, B.; Kałamaga, A.; Narkiewicz, U.; Morawski, A.W.; Wrobel, R. Changes in Porous Parameters of the Ion Exchanged x Zeolite and Their Effect on CO2 Adsorption. Molecules 2021, 26, 7520. [Google Scholar] [CrossRef]
- Huenuvil-Pacheco, I.; Jaramillo, A.F.; Abreu, N.J.; Garrido-Miranda, K.; Sánchez-Sanhueza, G.; González-Rocha, G.; Medina, C.; Montoya, L.F.; Sanhueza, J.P.; Melendrez, M.F. Biocidal Effects of Organometallic Materials Supported on ZSM-5 Zeolite: Influence of the Physicochemical and Surface Properties. Heliyon 2024, 10, e27182. [Google Scholar] [CrossRef]
- Abreu, N.J.; Valdés, H.; Zaror, C.A.; Azzolina-Jury, F.; Meléndrez, M.F. Ethylene Adsorption onto Natural and Transition Metal Modified Chilean Zeolite: An Operando DRIFTS Approach. Microporous Mesoporous Mater. 2019, 274, 138–148. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Song, H.; Zhang, L.; Wu, Y.; He, Y.; Ma, L.; Hong, J.; Tayal, A.; Marinkovic, N.; et al. Tuning Metal-Support Interactions in Nickel-Zeolite Catalysts Leads to Enhanced Stability during Dry Reforming of Methane. Nat. Commun. 2024, 15, 8566. [Google Scholar] [CrossRef] [PubMed]
- Isa, M.A.; Halim, M.H. Cation-Exchanged NaY Zeolite: Effect of Temperature and Ion Concentration to Membrane Performance. J. Phys. Conf. Ser. 2019, 1349, 012072. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Mohamed, A.S. Adsorption Removal of Safranin Dye Contaminants from Water Using Various Types of Natural Zeolite. Silicon 2019, 11, 1635–1647. [Google Scholar] [CrossRef]
- Mera, A.C.; Contreras, D.; Escalona, N.; Mansilla, H.D. BiOI Microspheres for Photocatalytic Degradation of Gallic Acid. J. Photochem. Photobiol. A Chem. 2016, 318, 71–76. [Google Scholar] [CrossRef]
- Xu, D.; Feng, J.; Che, S. An Insight into the Role of the Surfactant CTAB in the Formation of Microporous Molecular Sieves. Dalton Trans. 2014, 43, 3612–3617. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, B.; Rony, A.H.; Toan, S.; Chen, S.; Gasem, K.A.M.; Adidharma, H.; Fan, M.; Xiang, W. Thermogravimetric and Kinetics Investigation of Pine Wood Pyrolysis Catalyzed with Alkali-Treated CaO/ZSM-5. Energy Convers. Manag. 2017, 146, 182–194. [Google Scholar] [CrossRef]
- Król, M.; Dechnik, J.; Szymczak, P.; Handke, B.; Szumera, M.; Stoch, P. Thermal Behavior of Clinoptilolite. Crystals 2024, 14, 646. [Google Scholar] [CrossRef]
- Jia, Y.; Shi, Q.; Wang, J.; Ding, C.; Zhang, K. Synthesis, Characterization, and Catalytic Application of Hierarchical Nano-ZSM-5 Zeolite. RSC Adv. 2020, 10, 29618–29626. [Google Scholar] [CrossRef]
- Król, M.K.; Jeleń, P. The Effect of Heat Treatment on the Structure of Zeolite a. Materials 2021, 14, 4642. [Google Scholar] [CrossRef]
- Pires, J. Simultaneous Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) in Nanoporous Materials: Examples of Data for Zeolites, Metal–Organic Frameworks (MOFs), Clay Based and Mesostructured Solids. J. Inorg. Organomet. Polym. Mater. 2024, 34, 3346–3359. [Google Scholar] [CrossRef]
- Babatunde, K.A.; Negash, B.M.; Jufar, S.R.; Ahmed, T.Y.; Mojid, M.R. Adsorption of Gases on Heterogeneous Shale Surfaces: A Review. J. Pet. Sci. Eng. 2022, 208, 109466. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Sanzana, S.; Abreu, N.J.; Levío-Raimán, M.; Proal-Nájera, J.; Osorio, A.; Maza, S.; Daniele, L.; Castro-Rojas, J.; Soto, V.; González, C.; et al. Enhancing Manganese Sorption: Batch and Fixed-Bed Column Studies on Activated Zeolite. Environ. Technol. Innov. 2024, 33, 103495. [Google Scholar] [CrossRef]
- Kishore Kumar, M.; Shiva Nagendra, S.M. Characteristics of Ground Level CO2 Concentrations over Contrasting Land Uses in a Tropical Urban Environment. Atmos. Environ. 2015, 115, 286–294. [Google Scholar] [CrossRef]
- Wang, K.Y.; Wang, J.L.; Liu, W.T. Ambient Carbon Dioxide Concentrations in Industrial Park Areas: A Monitoring and Modeling Study. Atmos. Pollut. Res. 2014, 5, 179–188. [Google Scholar] [CrossRef]
- Komal; Soni, D.; Singh, K.; Aggarwal, S.G. Comparative Measurement of CO2, CH4 and CO at Two Traffic Interjunctions Having Inflated Vehicular Flow in Delhi. J. Environ. Sci. 2024, 141, 314–329. [Google Scholar] [CrossRef]
- Abreu, N.J.; Valdés, H.; Zaror, C.A.; de Oliveira, T.F.; Azzolina-Jury, F.; Thibault-Starzyk, F. Evidence of Synergy Effects between Zinc and Copper Oxides with Acidic Sites on Natural Zeolite during Photocatalytic Oxidation of Ethylene Using Operando DRIFTS Studies. Catalysts 2023, 13, 610. [Google Scholar] [CrossRef]
- Yang, R.T. Zeolites and Molecular Sieves. In Adsorbents: Fundamentals and Applications; Yang, R., Ed.; Wiley-Interscience: Hoboken, NJ, USA, 2003; p. 410. ISBN 0471297410. [Google Scholar]
- Chen, S.; Zhu, M.; Tang, Y.; Fu, Y.; Li, W.; Xiao, B. Molecular Simulation and Experimental Investigation of CO2 Capture in a Polymetallic Cation-Exchanged 13X Zeolite. J. Mater. Chem. A 2018, 6, 19570–19583. [Google Scholar] [CrossRef]
- Maurin, G.; Bell, R.; Kuchta, B.; Poyet, T.; Llewellyn, P. Adsorption of Non Polar and Quadrupolar Gases in Siliceous Faujasite: Molecular Simulations and Experiments. Adsorption 2005, 11, 331–336. [Google Scholar] [CrossRef]
- Smykowski, D.; Szyja, B.; Szczygieł, J. DFT Modeling of CO2 Adsorption on Cu, Zn, Ni, Pd/DOH Zeolite. J. Mol. Graph. Model. 2013, 41, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.P.; Coker, E.N. Ion Exchange in Zeolites. In Studies in Surface Science and Catalysis; van Bekkum, H., Flanigen, E.M., Jacobs, P.A., Jansen, J.C., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2001; Volume 7. [Google Scholar]
- Tsiotsias, A.I.; Georgiadis, A.G.; Charisiou, N.D.; Goula, M.A. CO2 Physisorption over an Industrial Molecular Sieve Zeolite: An Experimental and Theoretical Approach. Materials 2023, 16, 6656. [Google Scholar] [CrossRef]
- Feng, L.; Shen, Y.; Wu, T.; Liu, B.; Zhang, D.; Tang, Z. Adsorption Equilibrium Isotherms and Thermodynamic Analysis of CH4, CO2, CO, N2 and H2 on NaY Zeolite. Adsorption 2020, 26, 1101–1111. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. Exploring the Effect of Zeolite’s Structural Parameters on the CO2 Capture Efficiency Using RSM and ANN Methodologies. Case Stud. Chem. Environ. Eng. 2024, 9, 100595. [Google Scholar] [CrossRef]
- Sánchez-López, P.; Kotolevich, Y.; Antúnez-García, J.; Chávez-Rivas, F.; Khramov, E.; Berlier, G.; Moreno-Ruiz, L.; Zubavichus, Y.; Petranovskii, V.; Fuentes-Moyado, S.; et al. Influence of Components Deposition Order on Silver Species Formation in Bimetallic Ag-Fe System Supported on Mordenite. Catalysts 2022, 12, 1453. [Google Scholar] [CrossRef]
Zeolite Sample | Compensation Cation |
---|---|
SZ | NH4+ * |
SZ_Na | Na+ |
SZ_K | K+ |
SZ_Cu | Cu2+ |
SZ_Zn | Zn2+ |
Isotherm | General Equation | Linearised Equation |
---|---|---|
Langmuir | ||
Freundlich |
Zeolite Sample | Theoretical Copper Load (%) | Ion Exchange Time (h) | Maximum Adsorption Capacity (mg/g) |
---|---|---|---|
NZ_1 | 2 | 4 | - |
NZ_2 | 10 | 4 | - |
NZ_3 | 2 | 12 | - |
NZ_4 | 10 | 12 | - |
NZ_5 | 0.34 | 8 | - |
NZ_6 | 11.7 | 8 | - |
NZ_7 | 6 | 2.34 | - |
NZ_8 | 6 | 13.7 | - |
NZ_9 | 6 | 8 | - |
NZ_10 | 6 | 8 | - |
NZ_11 | 6 | 8 | - |
Zeolite Sample | SZ | SZ_Na | SZ_K | SZ_Cu | SZ_Zn | |
---|---|---|---|---|---|---|
1 Chemical composition | Si [%] | 38.04 | 40.76 | 40.10 | 35.23 | 37.03 |
Al [%] | 2.47 | 2.46 | 2.63 | 2.25 | 2.29 | |
O [%] | 59.49 | 55.61 | 55.24 | 61.32 | 59.07 | |
Na [%] | - | 1.17 | - | - | - | |
K [%] | - | - | 2.03 | - | - | |
Cu [%] | - | - | - | 1.20 | - | |
Zn [%] | - | - | - | - | 1.61 | |
Si/Al | 15.4 | 16.6 | 15.3 | 15.7 | 16.2 | |
2.1 Stotal (m2/g) | 328.3 | 273.6 | 291.7 | 310.6 | 316.7 | |
2.2 Amicro (m2/g) | 214.7 | 185.5 | 205.5 | 213.8 | 210.9 | |
Ameso (m2/g) | 113.6 | 88.1 | 86.2 | 96.8 | 105.8 | |
2.3 Vtotal (cm3/g) | 0.181 | 0.154 | 0.155 | 0.169 | 0.173 | |
2.4 Vmicro (cm3/g) | 0.163 | 0.135 | 0.150 | 0.156 | 0.158 | |
Vmeso (cm3/g) | 0.018 | 0.019 | 0.005 | 0.013 | 0.015 | |
2.5 Average pore size (nm) | 3.263 | 3.23 | 3.366 | 3.333 | 3.257 |
Model Parameters | SZ | SZ_Na | SZ_K | SZ_Cu | SZ_Zn | ||
---|---|---|---|---|---|---|---|
Langmuir Model | Qmax | mg/g | 105.8 | 105.4 | 105.9 | 105.9 | 105.8 |
Kl | dm3/mg | 0.054 | 0.049 | 0.049 | 0.133 | 0.128 | |
R2 | 0.998 | 0.994 | 0.996 | 0.997 | 0.998 | ||
Freundlich Model | n | 2.008 | 2.001 | 1.962 | 3.779 | 3.373 | |
Kf | mg/g | 10.70 | 10.21 | 9.76 | 31.78 | 27.77 | |
R2 | 0.955 | 0.968 | 0.967 | 0.977 | 0.937 |
Zeolite Sample | NZ | NZ_5 | NZ_3 | NZ_8 | NZ_4 | |
---|---|---|---|---|---|---|
Chemical composition | Si [%] | 31.54 | 33.35 | 32.36 | 33.46 | 34.62 |
Al [%] | 8.33 | 9.18 | 8.64 | 8.86 | 8.78 | |
O [%] | 47.6 | 48.77 | 50.56 | 47.83 | 46.79 | |
Na [%] | 1.74 | 1.26 | 1.06 | - | 0.96 | |
Mg [%] | 0.98 | 0.78 | 0.67 | 0.57 | 0.59 | |
K [%] | 1.87 | 1.20 | 1.51 | 1.63 | 1.5 | |
Ca [%] | 3.69 | 3.44 | 2.36 | 2.11 | 2.08 | |
Fe [%] | 3.99 | 1.43 | 1.4 | 3.35 | 0.92 | |
Cu [%] | - | 0.59 | 1.44 | 2.19 | 2.76 | |
Si/Al | 3.78 | 3.63 | 3.74 | 3.77 | 3.94 | |
Stotal (m2/g) | 108.3 | 137.4 | 146.6 | 147.4 | 131.8 | |
Vtotal (cm3/g) | 0.098 | 0.119 | 0.125 | 0.128 | 0.114 |
Model Parameters | NZ | NZ5 | NZ3 | NZ8 | NZ4 | ||
---|---|---|---|---|---|---|---|
Langmuir Model | Qmax | mg/g | 61.72 | 60.24 | 64.93 | 68.02 | 73.5 |
Kl | dm3/mg | 0.232 | 0.118 | 0.092 | 0.164 | 0.320 | |
R2 | 0.989 | 0.977 | 0.958 | 0.998 | 0.990 | ||
Freundlich Model | n | 6.172 | 4.849 | 2.425 | 4.614 | 4.48 | |
Kf | mg/g | 28.96 | 24.31 | 10.15 | 25.86 | 28.48 | |
R2 | 0.985 | 0.983 | 0.982 | 0.977 | 0.999 |
Zeolite Sample | Theoretical Copper Load (%) | Ion Exchange Time (h) | Maximum Adsorption Capacity (mg/g) |
---|---|---|---|
NZ_1 | 2 | 4 | 70.3 |
NZ_2 | 10 | 4 | 56.3 |
NZ_3 | 2 | 12 | 64.9 |
NZ_4 | 10 | 12 | 73.5 |
NZ_5 | 0.34 | 8 | 60.2 |
NZ_6 | 11.7 | 8 | 69.1 |
NZ_7 | 6 | 2.34 | 62.3 |
NZ_8 | 6 | 13.7 | 68.0 |
NZ_9 | 6 | 8 | 72.1 |
NZ_10 | 6 | 8 | 72.6 |
NZ_11 | 6 | 8 | 72.3 |
Zeolite Sample | Surface Area (m2/g) | Maximum Adsorption Capacity (mg/g) | Maximum Adsorption Capacity (mg/m2) |
---|---|---|---|
SZ | 328.3 | 105.8 | 0.32 |
SZ_Cu | 310.6 | 105.9 | 0.34 |
NZ | 108.3 | 61.72 | 0.56 |
NZ_4 | 131.8 | 73.5 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, N.J.; Jaramillo, A.F.; Becker-Garcés, D.F.A.; Antileo, C.; Martínez-Retureta, R.; Martínez-Ruano, J.A.; Ñanculeo, J.; Pérez, M.M.; Cea, M. Modification of Natural and Synthetic Zeolites for CO2 Capture: Unrevealing the Role of the Compensation Cations. Materials 2025, 18, 2403. https://doi.org/10.3390/ma18102403
Abreu NJ, Jaramillo AF, Becker-Garcés DFA, Antileo C, Martínez-Retureta R, Martínez-Ruano JA, Ñanculeo J, Pérez MM, Cea M. Modification of Natural and Synthetic Zeolites for CO2 Capture: Unrevealing the Role of the Compensation Cations. Materials. 2025; 18(10):2403. https://doi.org/10.3390/ma18102403
Chicago/Turabian StyleAbreu, Norberto J., Andrés F. Jaramillo, Daniel F. A. Becker-Garcés, Christian Antileo, Rebeca Martínez-Retureta, Jimmy A. Martínez-Ruano, Jaime Ñanculeo, Matías M. Pérez, and Mara Cea. 2025. "Modification of Natural and Synthetic Zeolites for CO2 Capture: Unrevealing the Role of the Compensation Cations" Materials 18, no. 10: 2403. https://doi.org/10.3390/ma18102403
APA StyleAbreu, N. J., Jaramillo, A. F., Becker-Garcés, D. F. A., Antileo, C., Martínez-Retureta, R., Martínez-Ruano, J. A., Ñanculeo, J., Pérez, M. M., & Cea, M. (2025). Modification of Natural and Synthetic Zeolites for CO2 Capture: Unrevealing the Role of the Compensation Cations. Materials, 18(10), 2403. https://doi.org/10.3390/ma18102403