Laser Cladding for Diamond-Reinforced Composites with Low-Melting-Point Transition Layer
Abstract
:1. Introduction
2. Experimental Materials and Equipment
2.1. Experimental Materials
2.2. Experimental Setup
2.3. Experimental Program
2.4. Testing Equipment
3. Results and Discussion
3.1. Analysis of Sample Morphology
3.1.1. Comparison of Cladding Morphology with and Without Transition Layer
3.1.2. Comparison of Diamond Microstructure and Encapsulation Efficiency with/Without Transition Layer
3.2. Diamond Graphitization
3.2.1. Comparative Analysis of Raman Spectroscopy Data
3.2.2. Comparative Analysis of Diamond Sintering Degree
3.3. Comparative Analysis of Microstructural Elemental Variations
3.4. Comparative Analysis of Friction Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnell, N.; Wegner, J.; Elspaß, A.; Kleszczynski, S. Effective absorptivity of diamond-reinforced metal matrix composites for powder bed fusion using a laser beam. Addit. Manuf. Lett. 2023, 6, 100138. [Google Scholar] [CrossRef]
- Duan, D.; Xiao, B.; Wang, W.; Zhang, Z.; Wang, B.; Han, P.; Ding, X. Interface characteristics and performance of pre-brazed diamond grains with Ni-Cr composite alloy. J. Alloys Compd. 2015, 644, 626–631. [Google Scholar] [CrossRef]
- Zhang, L. Filler metals, brazing processing and reliability for diamond tools brazing: A review. J. Manuf. Process. 2021, 66, 651–668. [Google Scholar] [CrossRef]
- Long, F.; He, P.; Sekulic, D. Research and Development of Powder Brazing Filler Metals for Diamond Tools: A Review. Metals 2018, 8, 315. [Google Scholar] [CrossRef]
- Iravani, M.; Khajepour, A.; Corbin, S.; Esmaeili, S. Pre-placed laser cladding of metal matrix diamond composite on mild steel. Surf. Coat. Technol. 2012, 206, 2089–2097. [Google Scholar] [CrossRef]
- Pang, A.; Sun, G.; Dong, J.; Pang, C.; Guo, Y.; Dong, S. Microstructure and properties of laser cladding diamond-metal wear- resistant coating. Diam. Abras. Eng. 2023, 43, 514–522. [Google Scholar]
- Rommel, D.; Scherm, F.; Kuttner, C.; Glatzel, U. Laser cladding of diamond tools: Interfacial reactions of diamond and molten metal. Surf. Coat. Technol. 2016, 291, 62–69. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Z.; Li, X.; Niu, H.; Guo, X.; An, Z. Insight into the graphitization mechanism of the interface between iron and diamond: A DFT study. Diam. Relat. Mater. 2022, 127, 109213. [Google Scholar] [CrossRef]
- Ma, Q.; Peng, Y.; Chen, Y.; Gao, Y.; Zhang, S.; Wu, X.; Zheng, J.; Wu, H.; Huang, L.; Liu, Y. Quantitative investigation of thermal evolution and graphitization of diamond abrasives in powder bed fusion-laser beam of metal-matrix diamond composites. Virtual Phys. Prototyp. 2023, 18, e2121224. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Liu, J.; Zhang, W.; Ma, Q.; Wu, X.; Guo, S.; Cui, Y.; Li, X.; Zheng, B.; et al. Numerical Simulation of Temperature Characteristics and Graphitization Mechanism of Diamond in Laser Powder Bed Fusion. Materials 2023, 16, 6338. [Google Scholar] [CrossRef]
- Zhuang, G.; Zong, W.; Tang, Y.; Cui, Z. Crystal orientation and material type related suppression to the graphitization Wear of micro diamond tool. Diam. Relat. Mater. 2022, 127, 109182. [Google Scholar] [CrossRef]
- Wu, F.; Liu, N.; Ma, Y.; Zhang, X.; Han, Y. Research on the influence of diamond coating microtexture on graphitization law and friction coefficient. Diam. Relat. Mater. 2022, 127, 109153. [Google Scholar] [CrossRef]
- Gan, J.; Gao, H.; Wen, S.; Zhou, Y.; Tan, S.; Duan, L. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting. Int. J. Refract. Met. Hard Mater. 2020, 87, 105144. [Google Scholar] [CrossRef]
- Ali, B.; Litvinyuk, I.V.; Rybachuk, M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges. Carbon 2021, 179, 209–226. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, G.; Su, Y.; Zhang, M.; Tong, Z.; Cui, C. Numerical Analysis of the Effects of Pulsed Laser Spot Heating Parameters on Brazing of Diamond Tools. Metals 2019, 9, 612. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, S.; Gao, X. Numerical modeling of thermal behavior of melt pool in laser additive manufacturing of Ni-based diamond tools. Ceram. Int. 2022, 48, 14876–14890. [Google Scholar] [CrossRef]
- Ramakrishna, M.; Koppoju, S.; Telasang, G.; Korla, R.; Padmanabham, G. Effect of solutioning temperature on the microstructural evolution during double aging of powder bed fusion-additive manufactured IN718 alloy. Mater. Charact. 2021, 172, 110868. [Google Scholar]
- Chen, Z.; Subhash, G.; Tulenko, J.S. Raman spectroscopic investigation of graphitization of diamond during spark plasma sintering of UO2- diamond composite nuclear fuel. J. Nucl. Mater. 2016, 475, 1–5. [Google Scholar] [CrossRef]
- Chayasombat, B.; Promoppatum, P.; Srisawadi, S.; Tanprayoon, D.; Tapracharoen, K.; Tummake, B.; Ihama, M.; Mizuguchi, Y.; Sato, Y.; Suga, T. Single track formation of TiC reinforced Inconel 718 metal matrix composites using selective laser melting process. Int. J. Adv. Manuf. Technol. 2024, 131, 4529–4542. [Google Scholar] [CrossRef]
- das Chagas, V.M.; Peçanha, M.P.; da Silva Guimarães, R.; dos Santos, A.A.; de Azevedo, M.G.; Filgueira, M. The influence of titanium carbide (TiC) coating over the thermal damage processes in diamonds. J. Alloys Compd. 2019, 791, 438–444. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, L.; Feng, G.; Xi, K.; Algadi, H.; Dong, M. Laser technologies in manufacturing functional materials and applications of machine learning-assisted design and fabrication. Adv. Compos. Hybrid Mater. 2025, 8, 76. [Google Scholar] [CrossRef]
- Sun, B.J.; Xiao, B. Effects of process parameters on interfacial microstructure, residual stresses, and properties of tunnel furnace brazed diamonds. Diam. Relat. Mater. 2018, 85, 98–103. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Z.; Shi, Z.; Gao, J.; Guo, J. The adsorption and migration behaviors of Fe atoms on the diamond (111) surface. Appl. Surf. Sci. 2021, 543, 148766. [Google Scholar] [CrossRef]
- Efeoglu, I.; Totik, Y.; Gulten, G.; Yaylali, B.; Yesilyurt, M. Adhesion and friction-wear characterization of W-doped hydrogenated diamond-like carbon (a-C:H) coatings. Surf. Coat. Technol. 2025, 495, 131578. [Google Scholar] [CrossRef]
- Sha, X.; Yue, W.; Qin, W.; Wang, C. Enhanced tribological behaviors of sintered polycrystalline diamond by annealing treatment under humid condition. Int. J. Refract. Met. Hard Mater. 2019, 80, 85–96. [Google Scholar] [CrossRef]
- Liang, H.; Yang, X.; Yue, C.; Zhao, G.; Zhang, J.; Wang, Y. A comparative friction and wear study of diamond and diamond-like carbon films against Cu. Tribol. Int. 2024, 193, 109344. [Google Scholar] [CrossRef]
Cr | Ni | Nb | Mo | Al | Ti | Si | Mn | Cu | O | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mass ratio | 19.54 | 52.05 | 5.02 | 3.07 | 0.46 | 0.91 | 0.32 | 0.019 | 0.0017 | 0.0287 | / |
C | Si | Mn | S | P | Ni | Cr | Cu | Fe | |
---|---|---|---|---|---|---|---|---|---|
Mass ratio | 0.45 | 0.2 | 0.55 | 0.012 | 0.022 | 0.01 | 0.03 | 0.02 | / |
Process Parameters | Numerical Value |
---|---|
Laser power/W | 1100 |
Scanning speed/mm/s | 10 |
Powder feed rate g/min | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Du, Y.; Liu, J.; Zhang, S.; Wang, T.; Guo, S.; Cui, Y.; Li, X.; Zheng, B.; Zhao, Y.; et al. Laser Cladding for Diamond-Reinforced Composites with Low-Melting-Point Transition Layer. Materials 2025, 18, 2402. https://doi.org/10.3390/ma18102402
Chen Y, Du Y, Liu J, Zhang S, Wang T, Guo S, Cui Y, Li X, Zheng B, Zhao Y, et al. Laser Cladding for Diamond-Reinforced Composites with Low-Melting-Point Transition Layer. Materials. 2025; 18(10):2402. https://doi.org/10.3390/ma18102402
Chicago/Turabian StyleChen, Yongqian, Yifei Du, Jialin Liu, Shanghua Zhang, Tianjian Wang, Shirui Guo, Yinghao Cui, Xiaolei Li, Bo Zheng, Yue Zhao, and et al. 2025. "Laser Cladding for Diamond-Reinforced Composites with Low-Melting-Point Transition Layer" Materials 18, no. 10: 2402. https://doi.org/10.3390/ma18102402
APA StyleChen, Y., Du, Y., Liu, J., Zhang, S., Wang, T., Guo, S., Cui, Y., Li, X., Zheng, B., Zhao, Y., & Cui, L. (2025). Laser Cladding for Diamond-Reinforced Composites with Low-Melting-Point Transition Layer. Materials, 18(10), 2402. https://doi.org/10.3390/ma18102402