First-Principles Study on the Electrical and Thermal Conductivities of Cu–Zn Binary Alloys
Abstract
1. Introduction
2. Computational Methods
2.1. Computational Models
2.2. Electrical Conductivity Calculations
2.3. Thermal Conductivity Calculations
2.4. Computational Parameters
3. Results and Discussion
3.1. Structural Optimization Results
3.2. Electrical Conductivity: Results and Discussion
3.3. Effect of Zn Content on the Electronic Structure
3.4. Thermal Conductivity: Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berndorf, S.; Markelov, A.; Guk, S.; Mandel, M.; Krüger, L.; Prahl, U. Development of a Dezincification-Free Alloy System for the Manufacturing of Brass Instruments. Metals 2024, 14, 800. [Google Scholar] [CrossRef]
- Brans, K.; Kind, S.; Meurer, M.; Bergs, T. Influence of the Material Production Route on the Material Properties and the Machinability of the Lead-Free Copper-Zinc-Alloy CuZn40 (CW509L). Metals 2024, 14, 747. [Google Scholar] [CrossRef]
- Stavroulakis, P.; Toulfatzis, A.I.; Pantazopoulos, G.A.; Paipetis, A.S. Machinable leaded and eco-friendly brass alloys for high performance manufacturing processes: A critical review. Metals 2022, 12, 246. [Google Scholar] [CrossRef]
- Suárez, L.; Rodriguez-Calvillo, P.; Cabrera, J.; Martínez-Romay, A.; Majuelos-Mallorquín, D.; Coma, A. Hot working analysis of a CuZn40Pb2 brass on the monophasic (β) and intercritical (α+ β) regions. Mater. Sci. Eng. A 2015, 627, 42–50. [Google Scholar] [CrossRef]
- Garg, R.; Ranganathan, S.; Suwas, S. Effect of mode of rolling on development of texture and microstructure in two-phase (α+ β) brass. Mater. Sci. Eng. A 2010, 527, 4582–4592. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, W.; Xie, L.; Song, Y. Effect of heat treatment on microstructure evolution, phase transformation and mechanical properties of dual phase Cu-Zn alloy. J. Alloys Compd. 2022, 904, 163960. [Google Scholar] [CrossRef]
- Choi, G.; Kim, H.S.; Lee, K.; Park, S.H.; Cha, J.; Chung, I.; Lee, W.B. Study on thermal conductivity and electrical resistivity of Al-Cu alloys obtained by Boltzmann transport equation and first-principles simulation: Semi-empirical approach. J. Alloys Compd. 2017, 727, 1237–1242. [Google Scholar] [CrossRef]
- Ho, C.; Ackerman, M.; Wu, K.; Oh, S.; Havill, T. Thermal conductivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 1978, 7, 959–1178. [Google Scholar] [CrossRef]
- Ho, C.Y.; Ackerman, M.; Wu, K.; Havill, T.; Bogaard, R.; Matula, R.; Oh, S.; James, H. Electrical resistivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 1983, 12, 183–322. [Google Scholar] [CrossRef]
- Jang, H.W.; Hong, J.-W. Influence of zinc content on the mechanical behaviors of Cu-Zn alloys by molecular dynamics. Materials 2020, 13, 2062. [Google Scholar] [CrossRef]
- Kong, G.-X.; Ma, X.-J.; Liu, Q.-J.; Li, Y.; Liu, Z.-T.; Matter, C. Structural stability, elastic and thermodynamic properties of Au–Cu alloys from first-principles calculations. Phys. B Condens. Matter 2018, 533, 58–62. [Google Scholar] [CrossRef]
- ASTM B36/B36M-23 (2023); Standard Specification for Brass Plate, Sheet, Strip, and Rolled Bar. ASTM International: West Conshohocken, PA, USA, 2023. Available online: https://cdn.standards.iteh.ai/samples/116325/cb60469514a0475baecfb788ef9a3d14/ASTM-B36-B36M-23.pdf (accessed on 9 May 2025).
- Dhaka, R.; Banik, S.; Shukla, A.; Vyas, V.; Chakrabarti, A.; Barman, S.; Ahuja, B.; Sharma, B. Electronic structure of α-and β-brass. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 073107. [Google Scholar] [CrossRef]
- Hong, H.; Wang, Q.; Dong, C.; Liaw, P.K. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys. Sci. Rep. 2014, 4, 7065. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cheng, L. Structural evolution and electronic properties of Cu-Zn alloy clusters. J. Alloys Compd. 2019, 771, 762–768. [Google Scholar] [CrossRef]
- Müller, S.; Zunger, A. Structure of ordered and disordered α-brass. Phys. Rev. B 2001, 63, 094204. [Google Scholar] [CrossRef]
- Temmerman, W.; Durham, P.; Szotek, Z.; Sob, M.; Larsson, C. Electronic effects in the order-disorder transition in β brass. J. Phys. F Met. Phys. 1988, 18, 2387. [Google Scholar] [CrossRef]
- Turchi, P.; Sluiter, M.; Pinski, F.; Johnson, D.D.; Nicholson, D.; Stocks, G.; Staunton, J. First-principles study of phase stability in Cu-Zn substitutional alloys. Phys. Rev. Lett. 1991, 67, 1779. [Google Scholar] [CrossRef]
- Upreti, D.; Basnet, R.; Sharma, M.M.; Chhetri, S.K.; Acharya, G.; Nabi, M.R.U.; Sakon, J.; Benamara, M.; Mortazavi, M.; Hu, J. Medium-Entropy Engineering of Magnetism in Layered Antiferromagnet CuxNi2(1−x)CrxP2S6. Adv. Funct. Mater. 2024, 35, 24018722. [Google Scholar] [CrossRef]
- Sharma, M.M.; Kumar, K.; Sang, L.; Wang, X.L.; Awana, V.P.S. Type-II Superconductivity Below 4 K in Sn0.4Sb0.6. J. Alloys Compd. 2020, 844, 156140. [Google Scholar] [CrossRef]
- Li, G.; Fu, C.; Shi, W.; Jiao, L.; Wu, J.; Yang, Q.; Saha, R.; Kamminga, M.E.; Srivastava, A.K.; Liu, E.; et al. Dirac nodal arc semimetal PtSn4: An ideal platform for understanding surface properties and catalysis for hydrogen evolution. Angew. Chem. 2019, 131, 13241–13246. [Google Scholar] [CrossRef]
- Li, H.; Zhou, D.; He, Q.; Si, N.; Xin, B.; Bu, S.; Ji, Q.; Li, H.; Fuchs, H.; Niu, T. Experimental realization and phase engineering of a two-dimensional SnSb binary honeycomb lattice. ACS Nano 2021, 15, 16335–16343. [Google Scholar] [CrossRef]
- Li, G.; Xu, Q.; Shi, W.; Fu, C.; Jiao, L.; Kamminga, M.E.; Yu, M.; Tüysüz, H.; Kumar, N.; Süß, V.; et al. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation. Sci. Adv. 2019, 5, eaaw9867. [Google Scholar] [CrossRef] [PubMed]
- Eastman, C.M.; Zhang, Q.; Zhao, J.-C. Diffusion coefficients and phase equilibria of the Cu-Zn binary system studied using diffusion couples. J. Phase Equilibria Diffus. 2020, 41, 642–653. [Google Scholar] [CrossRef]
- Van De Walle, A. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 2009, 33, 266–278. [Google Scholar] [CrossRef]
- van de Walle, A.; Tiwary, P.; de Jong, M.; Olmsted, D.L.; Asta, M.; Dick, A.; Shin, D.; Wang, Y.; Chen, L.-Q.; Liu, Z.-K. Efficient stochastic generation of special quasirandom structures. Calphad 2013, 42, 13–18. [Google Scholar] [CrossRef]
- Mahan, G.; Sofo, J. The best thermoelectric. Proc. Natl. Acad. Sci. USA 1996, 93, 7436–7439. [Google Scholar] [CrossRef]
- Madsen, G.K.; Singh, D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71. [Google Scholar] [CrossRef]
- Van der Laag, N.J.; Fang, C.M.; De With, G.; De Wijs, G.A.; Brongersma, H.H. Geometry of {001} Surfaces of Spinel (MgAl2O4): First-Principles Simulations and Experimental Measurements. J. Am. Ceram. Soc. 2005, 88, 1544–1548. [Google Scholar] [CrossRef]
- Madsen, G.K.; Carrete, J.; Verstraete, M.J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140–145. [Google Scholar] [CrossRef]
- Cui, Y.; Li, S.; Ying, T.; Bao, H.; Zeng, X. Research on the thermal conductivity of metals based on first principles. Acta Met. Sin 2020, 57, 375–384. [Google Scholar]
- Lavasani, A.; Bulmash, D.; Das Sarma, S. Wiedemann-Franz law and Fermi liquids. Phys. Rev. B 2019, 99, 085104. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. Projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Shewchuk, J.R. Classroom Figures for the Conjugate Gradient Method Without the Agonizing Pain; School of Computer Science Carnegie Mellon University: Pittsburgh, PA, USA, 1994. [Google Scholar]
- Beck, L.H.; Smith, C.S. Copper-zinc constitution diagram, redetermined in the vicinity of the beta phase by means of quantitative metallography. JOM 1952, 4, 1079–1083. [Google Scholar] [CrossRef]
- Jette, E.R.; Foote, F. Precision determination of lattice constants. J. Chem. Phys. 1935, 3, 605–616. [Google Scholar] [CrossRef]
- Keast, V.; Ewald, J.; De Silva, K.; Cortie, M.; Monnier, B.; Cuskelly, D.; Kisi, E. Optical properties and electronic structure of the Cu–Zn brasses. J. Alloys Compd. 2015, 647, 129–135. [Google Scholar] [CrossRef]
- Lu, S.; Chang, Y. The accurate evaluation of lattice spacings from back-reflection powder photographs. Proc. Phys. Soc. 1941, 53, 517. [Google Scholar] [CrossRef]
- Owen, E.A.; Yates, E.L. Precision measurements of crystal parameters. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1933, 15, 472–488. [Google Scholar] [CrossRef]
- Deinzer, G.; Birner, G.; Strauch, D. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon. Phys. Rev. B 2003, 67, 144304. [Google Scholar] [CrossRef]
- Gall, D. Electron mean free path in elemental metals. J. Appl. Phys. 2016, 119, 085101. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Obukhov, S.; Vast, N.; Sjakste, J.; Tyuterev, V.; Mingo, N. Thermoelectric transport properties of silicon: Toward an ab initio approach. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 205208. [Google Scholar] [CrossRef]
Phase | Crystal Structure | Lattice Parameters (Å) | Ref. | |
---|---|---|---|---|
Cu | FCC | a = 3.6077 | Exp. [40] | |
a = 3.6072 | Exp. [41] | |||
a = 3.615 | This study | |||
Cu3Zn-α | FCC | a = 3.6718 | Exp. [43] | |
a = 3.677 | This study | |||
CuZn-β’ | BCC | a = 2.9575 | Exp. [44] | |
a = 2.921 | This study | |||
Zn | HCP | a = 2.6594 | c = 4.9368 | Exp. [42] |
a = 2.6190 | c = 4.986 | This study |
Zn at.% | 12.81 | 17.02 | 19.81 | 24.04 | 29.41 | 35.3 | 39.39 | 43.68 | 48.02 |
---|---|---|---|---|---|---|---|---|---|
Conductivity (experimental) 107 S/m | 3.56 | 3.08 | 3.04 | 2.83 | 2.46 | 2.39 | 3.28 | 4.73 | 8.25 |
Zn at.% | 12.5 | 18.75 | 21.875 | 25 | 28.125 | 31.25 | 36 | - | 50 |
Conductivity (computed) 107 S/m | 2.02 | 1.83 | 1.78 | 1.66 | 1.57 | 1.49 | 1.02 | - | 4.46 |
Zn Doping Ratio | 12.5 at.% | 18.75 at.% | 21.875 at.% | 25 at.% | 28.125 at.% | 31.25 at.% |
---|---|---|---|---|---|---|
Integrated TDOS Value | 1.96 | 1.93 | 1.89 | 1.85 | 1.83 | 1.78 |
Results of Wiedemann–Franz Law Calculation Method | ||||||||
Zn at.% | 17.01 | 19.92 | 24.04 | 29.41 | 35.30 | 39.39 | 43.68 | 48.20 |
κexp (W/m/K) | 71 | 69 | 62 | 54 | 52 | 64 | 90 | 156 |
κWF (W/m/K) | 38.82 | 38.31 | 35.67 | 31.01 | 30.12 | 41.34 | 59.62 | 103.98 |
Results of DFT calculation method | ||||||||
Zn at.% | 12.5 | 18.75 | 21.875 | 25 | 28.125 | 31.25 | 36 | 50 |
κDFT (W/m/K) | 37.74 | 34.97 | 33.92 | 31.26 | 30.83 | 29.73 | 19.55 | 80.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Peng, B.; Yue, Q.; Huang, G.; Wang, C.; Wang, R.; Tian, N. First-Principles Study on the Electrical and Thermal Conductivities of Cu–Zn Binary Alloys. Materials 2025, 18, 2310. https://doi.org/10.3390/ma18102310
Huang L, Peng B, Yue Q, Huang G, Wang C, Wang R, Tian N. First-Principles Study on the Electrical and Thermal Conductivities of Cu–Zn Binary Alloys. Materials. 2025; 18(10):2310. https://doi.org/10.3390/ma18102310
Chicago/Turabian StyleHuang, Lei, Bo Peng, Qinchi Yue, Guojie Huang, Changhao Wang, Ruzhi Wang, and Ning Tian. 2025. "First-Principles Study on the Electrical and Thermal Conductivities of Cu–Zn Binary Alloys" Materials 18, no. 10: 2310. https://doi.org/10.3390/ma18102310
APA StyleHuang, L., Peng, B., Yue, Q., Huang, G., Wang, C., Wang, R., & Tian, N. (2025). First-Principles Study on the Electrical and Thermal Conductivities of Cu–Zn Binary Alloys. Materials, 18(10), 2310. https://doi.org/10.3390/ma18102310