Preparation of Composite Nanofiber Membranes via Solution Blow Spinning and Solution Impregnation Method for CO2 Capture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication Methods
2.1.1. Materials
2.1.2. Preparation of PA66-TEPA Nanofiber Membranes via SBS + SI Method
2.2. Performance Evaluation
2.2.1. CO2 Adsorption Performance of PA66 Composite Nanofiber Membranes
2.2.2. Mechanical Properties of PA66 Composite Nanofiber Membranes
2.2.3. Calculation of CO2/N2 Adsorption Selectivity
2.3. Characterization
3. Results
3.1. Morphological Characterization of Composite Nanofiber Membranes
3.2. Molecular Structure Analysis of Composite Nanofiber Membranes
3.3. Pore Structure Analysis of Composite Nanofiber Membranes
3.4. Mechanical Properties of Composite Nanofiber Membranes
3.5. CO2 Adsorption Performance of Composite Nanofiber Membranes
3.6. Selective CO2/N2 Adsorption Performance of Composite Nanofiber Membranes
3.7. CO2 Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chao, C.; Deng, Y.; Dewil, R.; Baeyens, J.; Fan, X. Post-combustion carbon capture. Renew. Sustain. Energy Rev. 2021, 138, 110490. [Google Scholar] [CrossRef]
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130–189. [Google Scholar] [CrossRef]
- Leung, D.Y.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 2017, 114, 650–665. [Google Scholar] [CrossRef]
- Feron, P.H.; Cousins, A.; Jiang, K.; Zhai, R.; Garcia, M. An update of the benchmark post-combustion CO2-capture technology. Fuel 2020, 273, 117776. [Google Scholar] [CrossRef]
- Du, J.; Li, W.-C.; Ren, Z.-X.; Guo, L.-P.; Lu, A.-H. Synthesis of mechanically robust porous carbon monoliths for CO2 adsorption and separation. J. Energy Chem. 2020, 42, 56–61. [Google Scholar] [CrossRef]
- An, H.; Feng, B.; Su, S. Effect of monolithic structure on CO2 adsorption performance of activated carbon fiber–phenolic resin composite: A simulation study. Fuel 2013, 103, 80–86. [Google Scholar] [CrossRef]
- Niu, M.; Yang, H.; Zhang, X.; Wang, Y.; Tang, A. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl. Mater. Interfaces 2016, 8, 17312–17320. [Google Scholar] [CrossRef]
- Sevilla, M.; Valle-Vigón, P.; Fuertes, A.B. N-doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 2011, 21, 2781–2787. [Google Scholar] [CrossRef]
- An, H.; Feng, B.; Su, S. CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. Int. J. Greenh. Gas Control 2011, 5, 16–25. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, T.-T.; Liu, X.-H.; Zou, K.; Deng, W.-Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 2013, 4, 1960. [Google Scholar] [CrossRef]
- Yan, X.-H.; Li, P.; Yuan, H.; Huang, W.; Hu, Z.; Yang, R.T. CO2 capture by ZSM-5 with varied Si/Al molar ratios: Isothermal adsorption capacity of CO2 vs dynamic CO2 adsorption capacity. Sep. Purif. Technol. 2025, 354, 129304. [Google Scholar] [CrossRef]
- Xu, X.; Song, C.; Miller, B.G.; Scaroni, A.W. Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process. Technol. 2005, 86, 1457–1472. [Google Scholar] [CrossRef]
- Abbasi, A.; Nasef, M.M.; Kheawhom, S.; Faridi-Majidi, R.; Takeshi, M.; Abouzari-Lotf, E.; Choong, T. Amine functionalized radiation induced grafted polyolefin nanofibers for CO2 adsorption. Radiat. Phys. Chem. 2019, 156, 58–66. [Google Scholar] [CrossRef]
- Heo, Y.-J.; Zhang, Y.; Rhee, K.Y.; Park, S.-J. Synthesis of PAN/PVDF nanofiber composites-based carbon adsorbents for CO2 capture. Compos. Part B Eng. 2019, 156, 95–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, J.; Wang, X.; Yu, J.; Ding, B. Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS Appl. Mater. Interfaces 2017, 9, 41087–41098. [Google Scholar] [CrossRef]
- Wang, J.; Adelodun, A.A.; Oh, J.M.; Jo, Y.M. TEPA impregnation of electrospun carbon nanofibers for enhanced low-level CO2 adsorption. Nano Converg. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Li, R.; Peng, K.; Zhao, K.; Bai, M.; Li, H.; Gao, W.; Gong, Z. Amine-impregnated porous carbon–silica sheets derived from vermiculite with superior adsorption capability and cyclic stability for CO2 capture. Chem. Eng. J. 2023, 464, 142662. [Google Scholar] [CrossRef]
- Das, D.; Meikap, B. Role of amine-impregnated activated carbon in carbon dioxide capture. Indian Chem. Eng. 2021, 63, 435–447. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, L.; Xie, Z.; Zhang, X.; Sui, X.; Li, J.-R. Porous sorbents for direct capture of carbon dioxide from ambient air. Chin. Chem. Lett. 2025, 36, 109676. [Google Scholar] [CrossRef]
- Surkatti, R.; Abdullatif, Y.M.; Muhammad, R.; Sodiq, A.; Mroue, K.; Al-Ansari, T.; Amhamed, A.I. Comparative analysis of amine-functionalized silica for direct air capture (DAC): Material characterization, performance, and thermodynamic efficiency. Sep. Purif. Technol. 2025, 354, 128641. [Google Scholar] [CrossRef]
- Ye, Q.; Jiang, J.; Wang, C.; Liu, Y.; Pan, H.; Shi, Y. Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels 2012, 26, 2497–2504. [Google Scholar] [CrossRef]
- Varghese, A.M.; Karanikolos, G.N. CO2 capture adsorbents functionalized by amine–bearing polymers: A review. Int. J. Greenh. Gas Control 2020, 96, 103005. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Q.; Chen, D.; Wen, S.; Wang, T. CO2 adsorption on amine-modified mesoporous silicas. J. Porous Mater. 2014, 21, 859–867. [Google Scholar] [CrossRef]
- Chouikhi, N.; Cecilia, J.A.; Vilarrasa-García, E.; Besghaier, S.; Chlendi, M.; Franco Duro, F.I.; Rodriguez Castellon, E.; Bagane, M. CO2 adsorption of materials synthesized from clay minerals: A review. Minerals 2019, 9, 514. [Google Scholar] [CrossRef]
- Islam, M.S.; Ang, B.C.; Andriyana, A.; Afifi, A.M. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 2019, 1, 1248. [Google Scholar] [CrossRef]
- Atif, R.; Khaliq, J.; Combrinck, M.; Hassanin, A.H.; Shehata, N.; Elnabawy, E.; Shyha, I. Solution blow spinning of polyvinylidene fluoride based fibers for energy harvesting applications: A review. Polymers 2020, 12, 1304. [Google Scholar] [CrossRef]
- Guan, X.; Zheng, G.; Dai, K.; Liu, C.; Yan, X.; Shen, C.; Guo, Z. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 2016, 8, 14150–14159. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Cao, X.; Wu, P.; Ye, G.; Fu, Y.; Zhuang, Y.; Zhang, A.; Zheng, K.; Ma, Y. High heat resistance and good melt spinnability of a polyamide 66 containing benzene structure. Mater. Adv. 2021, 2, 6647–6654. [Google Scholar] [CrossRef]
- Plaza, M.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel 2007, 86, 2204–2212. [Google Scholar] [CrossRef]
- Czepirski, L.; JagieŁŁo, J. Virial-type thermal equation of gas—Solid adsorption. Chem. Eng. Sci. 1989, 44, 797–801. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, X.-F.; Li, L.; Jin, L.; Zhang, Y.-G.; Song, S.-L.; Liu, R.-P. Nitrogen-enriched porous carbon fiber as a CO2 adsorbent with superior CO2 selectivity by air activation. Energy Fuels 2019, 33, 12558–12567. [Google Scholar] [CrossRef]
- Wei, H.; Deng, S.; Hu, B.; Chen, Z.; Wang, B.; Huang, J.; Yu, G. Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores. ChemSusChem 2012, 5, 2354–2360. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhou, T.; Su, G.; Li, Y.; Zhang, A. Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: Projection moving-window 2D correlation FTIR spectroscopy and the enthalpy. RSC Adv. 2016, 6, 87405–87415. [Google Scholar] [CrossRef]
- Su, H.; Zhang, H.; Qi, G.; Lu, W.; Wang, M. Preparation and CO2 adsorption properties of TEPA-functionalized multi-level porous particles based on solid waste. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130004. [Google Scholar] [CrossRef]
- Mushtaq, A.; Mukhtar, H.B.; Shariff, A.M. Research article FTIR study of enhanced polymeric blend membrane with amines. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 1811–1820. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Zainab, G.; Iqbal, N.; Babar, A.A.; Huang, C.; Wang, X.; Yu, J.; Ding, B. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Compos. Commun. 2017, 6, 41–47. [Google Scholar] [CrossRef]
- Chen, S.; He, X.; Li, P.; Li, L.; Wang, M.; Li, Y.; Xu, Q.; Sun, Y.; Hai, C.; Dong, S. Dynamic performance of TEPA-impregnated carbon nanofibers composites for direct air carbon capture in fixed bed columns. J. Environ. Chem. Eng. 2025, 13, 115747. [Google Scholar] [CrossRef]
- Aquino, C.C.; Richner, G.; Chee Kimling, M.; Chen, D.; Puxty, G.; Feron, P.H.; Caruso, R.A. Amine-functionalized titania-based porous structures for carbon dioxide postcombustion capture. J. Phys. Chem. C 2013, 117, 9747–9757. [Google Scholar] [CrossRef]
- Guillerm, V.; Weseliński, Ł.J.; Alkordi, M.; Mohideen, M.I.H.; Belmabkhout, Y.; Cairns, A.J.; Eddaoudi, M. Porous organic polymers with anchored aldehydes: A new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties. Chem. Commun. 2014, 50, 1937–1940. [Google Scholar] [CrossRef]
- Zhao, F.; Zhu, B.; Wang, L.; Yu, J. Triethanolamine-modified layered double oxide for efficient CO2 capture with low regeneration energy. J. Colloid Interface Sci. 2024, 659, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Xin, H.; Wang, M.; Xu, S.; Zhai, W.; Liu, S.; Wang, L.; Liu, S.; Wang, Z.; Lu, X. Functionalized 3D Covalent Organic Frameworks for High-Performance CO2 Capture and Separation over N2. Adv. Theory Simul. 2022, 5, 2200588. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, W.; Chen, B.; Zhou, H.; Yao, Q.; Shen, X.; Pan, Y.; Wu, D.; Cao, Y.; Shen, Z. In situ rapid synthesis of ionic liquid/ionic covalent organic framework composites for CO2 fixation. Chem. Commun. 2023, 59, 14435–14438. [Google Scholar] [CrossRef]
- Shao, L.; Liu, N.; Wang, L.; Sang, Y.; Wan, H.a.; Zhan, P.; Zhang, L.; Huang, J.; Chen, J. Facile preparation of oxygen-rich porous polymer microspheres from lignin-derived phenols for selective CO2 adsorption and iodine vapor capture. Chemosphere 2022, 288, 132499. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, L.; Zhang, Z.; Luo, X.; Zhang, L.; Shen, Q.; Li, S.; Zhang, H.; Sun, N.; Wei, W. Potassium tethered carbons with unparalleled adsorption capacity and selectivity for low-cost carbon dioxide capture from flue gas. ACS Appl. Mater. Interfaces 2018, 10, 3495–3505. [Google Scholar] [CrossRef] [PubMed]
- Zainab, G.; Babar, A.A.; Iqbal, N.; Wang, X.; Yu, J.; Ding, B. Amine-impregnated porous nanofiber membranes for CO2 capture. Compos. Commun. 2018, 10, 45–51. [Google Scholar] [CrossRef]
- Bollini, P.; Didas, S.A.; Jones, C.W. Amine-oxide hybrid materials for acid gas separations. J. Mater. Chem. 2011, 21, 15100–15120. [Google Scholar] [CrossRef]
- Miao, Y.; He, Z.; Zhu, X.; Izikowitz, D.; Li, J. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica. Chem. Eng. J. 2021, 426, 131875. [Google Scholar] [CrossRef]
- Suba, M.; Verdeș, O.; Borcănescu, S.; Popa, A. Effect of temperature on CO2 adsorption onto amine-functionalized KIT-6 adsorbents. Molecules 2024, 29, 3172. [Google Scholar] [CrossRef] [PubMed]
- Irani, M.; Jacobson, A.T.; Gasem, K.A.; Fan, M. Modified carbon nanotubes/tetraethylenepentamine for CO2 capture. Fuel 2017, 206, 10–18. [Google Scholar] [CrossRef]
- Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 2017, 116, 448–455. [Google Scholar] [CrossRef]
Sample | Pore Volume (cm3/g) | SBET (m2/g) |
---|---|---|
PA66 | 0.23 | 17.31 |
PA66-TEPA-5 | 0.18 | 7.51 |
PA66-TEPA-10 | 0.15 | 5.21 |
PA66-TEPA-15 | 0.11 | 3.75 |
PA66-TEPA-20 | 0.02 | 1.56 |
Sample | Adsorption Temperature (°C) | CO2 Adsorption Capacity (mg g−1) | Ref. |
---|---|---|---|
Mesoporous TiO2 bead bentonite | 30 | 18 | [41] |
Porous organic polymer | 25 | 42 | [42] |
PA66-TEPA | 25 | 44.7 | This work |
Commercial activated carbon | 25 | 49 | [31] |
NiCoAl-LDO | 0 | 55 | [43] |
COF-300-NO2 | 25 (100 kPa) | 187 | [44] |
COF-300-SO3H | 25 (100 kPa) | 274 | [44] |
C4-IL/ICOF | 0 | 71 | [45] |
HCP1 | 0 | 64.1 | [46] |
Sample | Gas, Temperature (°C) | KH | R2 |
---|---|---|---|
PA66-TEPA-15 | CO2, 25 | 6.1 × 10−8 | 0.973 |
PA66-TEPA-15 | N2, 25 | 2.14 × 10−9 | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Wang, Y.; Zhu, C.; Wu, W.; Fan, X. Preparation of Composite Nanofiber Membranes via Solution Blow Spinning and Solution Impregnation Method for CO2 Capture. Materials 2025, 18, 2303. https://doi.org/10.3390/ma18102303
Yang K, Wang Y, Zhu C, Wu W, Fan X. Preparation of Composite Nanofiber Membranes via Solution Blow Spinning and Solution Impregnation Method for CO2 Capture. Materials. 2025; 18(10):2303. https://doi.org/10.3390/ma18102303
Chicago/Turabian StyleYang, Kaiwen, Yun Wang, Changshun Zhu, Weiguang Wu, and Xuefei Fan. 2025. "Preparation of Composite Nanofiber Membranes via Solution Blow Spinning and Solution Impregnation Method for CO2 Capture" Materials 18, no. 10: 2303. https://doi.org/10.3390/ma18102303
APA StyleYang, K., Wang, Y., Zhu, C., Wu, W., & Fan, X. (2025). Preparation of Composite Nanofiber Membranes via Solution Blow Spinning and Solution Impregnation Method for CO2 Capture. Materials, 18(10), 2303. https://doi.org/10.3390/ma18102303