A First-Principles Comparative Study on the Elastic and Related Properties of Ti3AC2 (A = Si, Ir, and Au) MAX Phases
Abstract
1. Introduction
2. Methodology
3. Results and Discussions
3.1. Elastic and Mechanical Properties
3.2. Acoustic and Thermal Properties
3.3. Density of States
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, J.; Wang, Z.; Ma, G.; Bai, X.; Li, Y.; Cheng, X.; Ke, P.; Wang, A. MAX phase forming mechanisms of M–Al–C (M = Ti, V, Cr) coatings: In-situ X-ray diffraction and first-principle calculations. J. Mater. Sci. Technol. 2023, 143, 140–152. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, X.; Jia, D.; Zhou, Y.; van der Zwaag, S. On the formation mechanisms and properties of MAX phases: A review. J. Eur. Ceram. Soc. 2021, 41, 3851–3878. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, A.; Wang, Z.; Wang, K.; Zhang, J.; Xu, K.; Xu, Y.; Zhou, S.; Wang, A. MAX phases coatings: Synthesis, protective performance, and functional characteristics. Mater. Horiz. 2025, 12, 1689. [Google Scholar] [CrossRef] [PubMed]
- Fashandi, H.; Dahlqvist, M.; Lu, J.; Palisaitis, J.; Simak, S.I.; Abrikosov, I.A.; Rosen, J.; Hultman, L.; Andersson, M.; Spetz, A.L.; et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater. 2017, 16, 814–818. [Google Scholar] [CrossRef]
- Finkel, P.; Barsoum, M.W.; El-Raghy, T. Low temperature dependence of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2. J. Appl. Phys. 2000, 87, 1701. [Google Scholar] [CrossRef]
- Radovic, M.; Barsoum, M.W.; Ganguly, A.; Zhen, T.; Finkel, P.; Kalidindi, S.R.; Lara-Curzio, E. On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573 K temperature range. Acta Mater. 2006, 54, 2757–2767. [Google Scholar] [CrossRef]
- Bai, Y.; He, X.; Sun, Y.; Zhu, C.; Li, M.; Shi, L. Chemical bonding and elastic properties of Ti3AC2 phases (A=Si, Ge, and Sn): A first-principles study. Solid State Sci. 2010, 12, 1220–1225. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, X.F.; He, L.; Ye, H. Topology of charge density and elastic anisotropy of Ti3SiC2 polymorphs. J. Mater. Res. 2005, 20, 1180–1185. [Google Scholar] [CrossRef]
- Magnuson, M.; Mattesini, M. Chemical bonding and electronic structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 2017, 621, 108–130. [Google Scholar] [CrossRef]
- Ali, M.S.; Islam, A.K.M.A.; Hossain, M.M.; Parvin, F. Phase stability, elastic, electronic, thermal and optical properties of Ti3Al1−xSixC2 (0 ≤ x ≤ 1): First-principles study. Phys. B Condens. Matter. 2012, 407, 4221–4228. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Polymorphism of Ti3SiC2 ceramic: First-principles investigations. Phys. Rev. B 2004, 69, 144108. [Google Scholar] [CrossRef]
- Qureshi, M.W.; Ma, X.; Tang, G.; Paudel, R.; Paudyal, D. Theoretical predictive screening of noble-metal-containing M3AuC2 (M = Ti, V, and Cr) MAX phases. Comput. Mater. Sci. 2022, 202, 111013. [Google Scholar] [CrossRef]
- Aliakbari, A.; Amiri, P.; Dezfuli, A. Stability and physical properties of yttrium-based new MAX phases Y2AX (A=Al, Si, Ga, and Ge; X=C and N): A first-principles prediction. Appl. Phys. A 2023, 129, 111013. [Google Scholar] [CrossRef]
- Ali, M.; Bibi, Z.; Iqbal, M.M.A. First-principles investigation of structural, mechanical, and optoelectronic properties of Hf2AX (A=Al, Si and X=C, N) MAX phases. J. Am. Ceram. Soc. 2024, 107, 2679–2692. [Google Scholar] [CrossRef]
- Ge, J.; Qi, H. Electronic and optical properties of Ti3AC2 (A=Sn, Ge, Si) MAX phases by first-principles calculations. Phys. B Condens. Matter 2025, 706, 417140. [Google Scholar] [CrossRef]
- Akhter, M.; Ahasan, M.S.; Ali, M.A.; Parvin, F. Elastic, electronic, optical, and thermodynamic properties of M2SeC (M=Hf, Zr) under high pressure. AIP Adv. 2023, 13, 025154. [Google Scholar] [CrossRef]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Wu, X.; Vanderbilt, D.; Hamann, D.R. Systematic treatment of displacements, and electric fields in density-functional perturbation theory. Phys. Rev. B 2005, 72, 035105. [Google Scholar] [CrossRef]
- Erba, A. The internal-strain tensor of crystals for nuclear-relaxed elastic and piezoelectric constants: On the full exploitation of its symmetry features. Phys. Chem. Chem. Phys. 2016, 18, 13984–13992. [Google Scholar] [CrossRef]
- Arunajatesan, S.; Carim, A.H. Symmetry and crystal structure of Ti3SiC2. Mater. Lett. 1994, 20, 319–324. [Google Scholar] [CrossRef]
- Chen, L.; Deng, Z.; Li, M.; Li, P.; Chang, K.; Huang, F.; Du, S.; Huang, Q. Phase diagrams of novel MAX phases. J. Inorg. Mater. 2020, 35, 35–40. [Google Scholar]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, UK, 1954. [Google Scholar]
- Pettifor, D.G. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 1992, 8, 345–349. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik; Taubner: Leipzig, Germany, 1928. [Google Scholar]
- Reuss, A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Pugh, S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Koster, W.; Franz, H. Poisson’s ratio for metals and alloys. Metall. Rev. 1961, 6, 1–56. [Google Scholar] [CrossRef]
- Haines, J.; Leger, J.M.; Bocquillon, G. Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 2001, 31, 1–23. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Zeng, X.; Peng, R.; Yu, Y.; Hu, Z.; Wen, Y.; Song, L. Pressure effect on elastic constants and related properties of Ti3Al intermetallic compound: A first-principles study. Materials 2018, 11, 2015. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [PubMed]
- Kube, C.M. Elastic anisotropy of crystals. AIP Adv. 2016, 6, 095209. [Google Scholar] [CrossRef]
- Anderson, O.L. A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
- Schreiber, E.; Anderson, O.L.; Soga, N. Elastic Constants and Their Measurements; McGraw-Hill: New York, NY, USA, 1973. [Google Scholar]
- Clarke, D.R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 2003, 163–164, 67–74. [Google Scholar] [CrossRef]
- Fine, M.E.; Brown, L.D.; Marcus, H.L. Elastic constants versus melting temperature in metals. Scr. Metall. 1984, 18, 951–956. [Google Scholar] [CrossRef]
- Lee, C.H.; Gan, C.K. Anharmonic interatomic force constants and thermal conductivity from Grüneisen parameters: An application to graphene. Phys. Rev. B 2017, 96, 035105. [Google Scholar] [CrossRef]
Phase | a | c | Refs. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | 3.072 | 17.745 | 4.485 | 363.9 | 85.1 | 98.8 | 351.0 | 155.9 | 139.4 | −57.1 | −54.4 | This |
Theo. | 3.059 | 17.636 | 4.55 | 366 | 94 | 100 | 352 | 153 | 136 | −53 | −42 | [7] |
3.076 | 17.729 | 360 | 84 | 101 | 350 | 158 | [4,8] | |||||
3.08 | 17.68 | 378.6 | 84.2 | 100.4 | 361.0 | 172.0 | [9] | |||||
367 | 86 | 96 | 351 | 153 | [10] | |||||||
3.062 | 17.609 | 355 | 96 | 103 | 347 | 160 | 130 | −57 | −34 | [11] | ||
Expt. | 3.06 | 17.66 | 4.50 | [5,9] | ||||||||
3.07 | 17.69 | 4.50 | [6,26] | |||||||||
Ir | 3.025 | 18.165 | 8.307 | 396.7 | 109.2 | 149.7 | 405.0 | 78.3 | 143.8 | 71.3 | −34.6 | This |
3.023 | 18.211 | [4] | ||||||||||
3.025 | 18.196 | [27] | ||||||||||
Au | 3.083 | 18.643 | 7.895 | 303.7 | 131.8 | 91.0 | 326.9 | 61.0 | 86.0 | 30.0 | 45.8 | This |
3.085 | 18.633 | [4] | ||||||||||
3.087 | 18.650 | [27] | ||||||||||
3.084 | 18.657 | 7.87 | 325 | 116 | 93 | 324 | 61 | [12] | ||||
Expt. | 18.56 | [4] |
Phase | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Si | 182.7 | 182.7 | 182.7 | 143.3 | 142.4 | 142.9 | 0.782 | 340.0 | 0.190 | This |
186 | 186 | 186 | 141 | 140 | 140.5 | 338 | 0.20 | [7] | ||
182 | 142 | [8] | ||||||||
187.6 | 152.9 | 0.82 | 360.7 | 0.18 | [9] | |||||
182 | 143 | 340 | 0.189 | [10] | ||||||
184 | 140 | 339 | [11] | |||||||
Expt. | 187 | 187 | 187 | 142 | 142 | 142 | 0.76 | 339 | 0.20 | [5] |
185.6 | 185.6 | 185.6 | 143.8 | 143.8 | 143.8 | 0.77 | 343 | 0.192 | [6] | |
Ir | 223.9 | 223.2 | 223.6 | 112.7 | 104.5 | 108.6 | 0.486 | 280.5 | 0.291 | This |
Au | 173.5 | 173.4 | 173.5 | 83.0 | 77.7 | 80.3 | 0.463 | 208.8 | 0.299 | This |
175 | 87 | 0.495 | 224 | 0.28 | [12] |
Phase | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|
Si | 547.5 | 549.2 | 147.2 | 155.9 | 326.4 | 307.5 | 0.202 | 0.220 | This |
311 | 300 | 0.201 | 0.229 | [11] | |||||
Ir | 627.0 | 774.9 | 101.4 | 78.3 | 332.9 | 316.4 | 0.235 | 0.296 | This |
Au | 533.2 | 496.1 | 71.4 | 61.0 | 237.7 | 288.9 | 0.277 | 0.209 | This |
Phase | |||||
---|---|---|---|---|---|
Si | 1.205 | 1.205 | 1 | 0.032 | 0.014 |
Ir | 0.624 | 0.624 | 1 | 0.397 | 0.169 |
Au | 0.544 | 0.544 | 1 | 0.337 | 0.146 |
Phase | ||||||
---|---|---|---|---|---|---|
Si | 1763 | 2849 | 1865 | 2798 | 1865 | 1865 |
Ir | 1316 | 2185 | 971 | 2208 | 971 | 971 |
Au | 1044 | 1961 | 879 | 2035 | 879 | 879 |
Phase | Ref. | |||||||
---|---|---|---|---|---|---|---|---|
Si | 9122 | 5644 | 6224 | 807.4 | 1.635 | 1972.3 | 1.248 | This |
9069 | 5571 | 6148 | 801 | [7] | ||||
805 | [8] | |||||||
9330 | 5830 | 834.3 | [9] | |||||
Expt. | 9142 | 5613 | 6195 | 784 | [5] | |||
9185 | 5670 | 6225 | 813 | [6] | ||||
Ir | 6659 | 3616 | 4035 | 524.7 | 1.083 | 2151.6 | 1.718 | This |
Au | 5962 | 3190 | 3563 | 453.6 | 0.914 | 1755.4 | 1.769 | This |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Gu, H.; Yu, Y.; Lai, Z.; Zeng, X.; Wang, G. A First-Principles Comparative Study on the Elastic and Related Properties of Ti3AC2 (A = Si, Ir, and Au) MAX Phases. Materials 2025, 18, 2296. https://doi.org/10.3390/ma18102296
Wen Y, Gu H, Yu Y, Lai Z, Zeng X, Wang G. A First-Principles Comparative Study on the Elastic and Related Properties of Ti3AC2 (A = Si, Ir, and Au) MAX Phases. Materials. 2025; 18(10):2296. https://doi.org/10.3390/ma18102296
Chicago/Turabian StyleWen, Yufeng, Huaizhang Gu, Yanlin Yu, Zhangli Lai, Xianshi Zeng, and Guilian Wang. 2025. "A First-Principles Comparative Study on the Elastic and Related Properties of Ti3AC2 (A = Si, Ir, and Au) MAX Phases" Materials 18, no. 10: 2296. https://doi.org/10.3390/ma18102296
APA StyleWen, Y., Gu, H., Yu, Y., Lai, Z., Zeng, X., & Wang, G. (2025). A First-Principles Comparative Study on the Elastic and Related Properties of Ti3AC2 (A = Si, Ir, and Au) MAX Phases. Materials, 18(10), 2296. https://doi.org/10.3390/ma18102296