Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of PDLSCs
2.2. Preparation of Extracts of EbM Using Response Surface Methodology
2.3. Synthesis and Characterization of ZnONPs
2.4. Fabrication of PCL–ZnO Nanofibers and Physical Characterization
2.5. Cell Viability vs. ZnONP Treatment
2.6. Alkaline Phosphatase Activity Assay and Mineralization Analysis
2.7. Reverse Transcription Polymerase Chain Reaction (RT-PCR)
2.8. Western Blotting
2.9. Statistical Analysis
3. Results
3.1. Characterization of PDLSCs
3.2. Optimization of EbM Extract via RSM
3.3. Characterization of ZnONPs and PCL–ZnO Nanofibers
3.4. PCL–ZnONP Nanofibers Induce Osteogenic Differentiation
3.5. Osteoblastic Gene and Protein Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, T.; Yan, G.; Guan, M. Zinc homeostasis in bone: Zinc transporters and bone diseases. Int. J. Mol. Sci. 2020, 21, 1236. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Rajendran, P.; Veeraraghavan, V.P.; Hussain, S.; Balakrishna, J.P.; Chinnathambi, A.; Alharbi, S.A.; Alahmadi, T.A.; Rengarajan, T.; Mohan, S.K. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells. Mater. Sci. Eng. C 2021, 119, 111656. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhang, W.; Tian, P.; Meng, F.; Zhu, H.; Jiang, X.; Liu, X.; Chu, P.K. Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials 2014, 35, 6882–6897. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, M.; Ran, X.; Cui, J.; Wei, F.; Yi, G.; Chen, W.; Luo, X.; Chen, Z. The role of zinc in bone mesenchymal stem cell differentiation. Cell. Reprogramming 2022, 24, 80–94. [Google Scholar] [CrossRef]
- Canales, D.A.; Piñones, N.; Saavedra, M.; Loyo, C.; Palza, H.; Peponi, L.; Leonés, A.; Baier, R.V.; Boccaccini, A.R.; Grünelwald, A.; et al. Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 2023, 228, 78–88. [Google Scholar] [CrossRef]
- Garino, N.; Sanvitale, P.; Dumontel, B.; Laurenti, M.; Colilla, M.; Izquierdo-Barba, I.; Cauda, V.; Vallet-Regì, M. Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Adv. 2019, 9, 11312–113321. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Qing, Y.; Li, R.; Tang, X.; Guo, D.; Qin, Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int. J. Nanomed. 2020, 15, 6247–6262. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Rawat, M. A review on green synthesis and characterization of silver nanoparticles and their applications: A green nanoworld. World J. Pharm. Pharm. Sci. 2016, 6, 730–762. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Rajeswari, V.D. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 2018, 3569758. [Google Scholar] [CrossRef]
- Singh, T.A.; Das, J.; Sil, P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 2020, 286, 102317. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Yang, L.; Zhang, Y.; Li, Y.; Wu, H. Epimedium brevicornum Maxim. Extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis/transfer. Front. Pharmacol. 2022, 13, 963160. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.N.; Mo, H.Y.; Chen, J.M. Effects of epimedium total flavonoids phytosomes on preventing and treating bone-loss of ovariectomized rats. Zhongguo Zhong Yao Za Zhi 2002, 27, 221–224. [Google Scholar] [PubMed]
- Li, J.; Yu, S.; Li, T.; Pang, S. In vitro study of the effects of Epimedium on osteoclastic bone resorption in various oral mineralized tissues. Zhonghua Kou Qiang Yi Xue Za Zhi 2002, 37, 391–394. [Google Scholar]
- Shitole, A.A.; Raut, P.W.; Sharma, N.; Giram, P.; Khandwekar, A.P.; Garnaik, B. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. J. Mater. Sci. Mater. Med. 2019, 30, 51. [Google Scholar] [CrossRef]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of copper nanoparticles: An overview of the various methods. Korean J. Chem. Eng. 2014, 31, 1105–1109. [Google Scholar] [CrossRef]
- Parashar, V.; Parashar, R.; Sharma, A.C.; Pandey, A.C. Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization, Dige. J. Nanom. Bios. 2009, 4, 45–50. [Google Scholar]
- Saifuddin, N.M.; Wong, C.W.; Yasumira, A.A. Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. E-J. Chem. 2009, 6, 61–70. [Google Scholar] [CrossRef]
- Bhainsa, K.C.; Sauza, S.F.D. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces 2006, 47, 160–164. [Google Scholar] [CrossRef]
- Seo, B.M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- Gay, L.C.; Chen, S.; MacDougall, M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 2007, 10, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.S.; Chen, J.H.; Su, W.T. Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review. Curr. Stem Cell Res. Ther. 2020, 15, 61–76. [Google Scholar] [PubMed]
- Huang, G.T.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef]
- Iwata, T.; Yamato, M.; Zhang, Z.; Mukobata, S.; Washio, K.; Ando, T.; Feijen, J.; Okano, T.; Ishikawa, I. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J. Clin. Periodontol. 2010, 37, 1088–1099. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Marie, P.J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002, 16, 1446–1465. [Google Scholar] [CrossRef]
- Huang, T.Y.; Shahrousvand, M.; Hsu, Y.T.; Su, W.T. Polycaprolactone/polyethylene glycol blended with Dipsacus asper wall extract nanofibers promote osteogenic differentiation of periodontal ligament stem cells. Polymers 2021, 13, 2245. [Google Scholar] [CrossRef]
- Sembiring, E.N.; Elya, B.; Sauriasari, R. Phytochemical Screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) roxb. Pharmacogn. J. 2018, 10, 123–127. [Google Scholar] [CrossRef]
- Huang, T.Y.; Su, W.T.; Chen, P.H. Comparing the effects of chitosan scaffolds containing various divalent metal phosphates on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Biol. Trace Elem. Res. 2018, 185, 316–326. [Google Scholar] [CrossRef]
- Neli, M.; Ali, A.; Wilfried, W.; Sergei, K.; Satoru, I. Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants. Materials 2018, 11, 1127. [Google Scholar]
- Mohammad, A.; Saeed, R.Z. Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites. Int. J. Mol. Sci. 2012, 13, 4340–4350. [Google Scholar]
- Munir, N.; Mahmood, Z.; Yameen, M.; Mustafa, G. Therapeutic Response of Epimedium gandiflorum’s Different Doses to Restore the Antioxidant Potential and Reproductive Hormones in Male Albino Rats. Dose-Response 2020, 18, 1559325820959563. [Google Scholar] [CrossRef] [PubMed]
- Anzlovar, A.; Orel, Z.; Kogej, K.; Zigon, M. Polyol-Mediated Synthesis of Zinc Oxide Nanorods and Nanocomposites with Poly(methyl methacrylate). J. Nanomater. 2012, 2012, 760872. [Google Scholar] [CrossRef]
- Goncharova, D.A.; Bolbasov, E.N.; Nemoykina, A.L.; Aljulaih, A.A.; Tverdokhlebova, T.S.; Kulinich, S.A.; Svetlichnyi, V.A. Structure and properties of biodegradable plla/ZnO composite membrane produced via electrospinning. Materials 2021, 14, 2. [Google Scholar] [CrossRef]
- Grewal, N.; Kumar, K.; Batra, U. Polycaprolactone/Hydroxyapatite coating on spark generated Mg surfaces to promote anticorrosion and interfacial adhesion strength. Mater. Today Commun. 2023, 36, 106440. [Google Scholar] [CrossRef]
- Fadaie, M.; Mirzaei, E. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior. Nanomed. J. 2018, 5, 77–89. [Google Scholar]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 16, 102336. [Google Scholar] [CrossRef]
- Vidhya, E.; Vijayakumar, S.; Prathipkumar, S.; Praseetha, P.K. Green way biosynthesis: Characterization, antimicrobial and anticancer activity of ZnO nanoparticles. Gene Rep. 2020, 20, 100688. [Google Scholar] [CrossRef]
- Ahmed, S.; Annu; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B Biol. 2017, 166, 272–284. [Google Scholar] [CrossRef]
- Fardood, S.T.; Ramazani, A.; Moradi, S.; Asiabi, P.A. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. Mater. Electron. 2017, 28, 13596–13601. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Priyanka, N.; Manikandan, K.; Ganeshbabu, I.; Indiraarulselvi, P.; Geetha, N.; Muralikrishna, K.; Bhattacharya, R.C.; Tiwari, M.; Sharma, N.; et al. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 2017, 110, 118–127. [Google Scholar] [CrossRef]
- Hussein, B.Y.; Mohammed, A.M. Green synthesis of ZnO nanoparticles in grape extract: Their application as anti-cancer and anti-bacterial. Mater. Today Proc. 2021, 42, A18–A26. [Google Scholar] [CrossRef]
- Rani, N.; Rawat, K.; Saini, M.; Yadav, S.; Shrivastava, A.; Saini, K.; Maity, D. Azadirachta indica leaf extract mediated biosynthesized rod-shaped zinc oxide nanoparticles for in vitro lung cancer treatment. Mater. Sci. Eng. B 2022, 284, 115851. [Google Scholar] [CrossRef]
- Lin, W.; Li, D. Zinc and zinc transporters: Novel regulators of ventricular myocardial development. Pediatr. Cardiol. 2018, 39, 1042–1051. [Google Scholar] [CrossRef]
- Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 2015, 345, 329–336. [Google Scholar] [CrossRef]
- Kumar, M.R.A.; Ravikumar, C.R.; Nagaswarupa, H.P.; Purshotam, B.; Gonfa, B.; Murthy, H.C.A.; Sabir, F.K.; Tadesse, S. Evaluation of bi-functional applications of ZnO nanoparticles prepared by green and chemical methods. J. Environ. Chem. Eng. 2019, 7, 103468. [Google Scholar] [CrossRef]
- Guo, S.; He, L.; Yang, R.; Chen, B.; Xie, X.; Jiang, B.; Tian, W.; Ding, Y. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J. Biomater. Sci. Polym. Ed. 2020, 31, 155–168. [Google Scholar] [CrossRef]
- Scherer, F.; Wille, S.; Saure, L.; Schütt, F.; Wellhäußer, B.; Adelung, R.; Kern, M. Investigation of mechanical properties of polymer-infiltrated tetrapodal zinc oxide in different variants. Materials 2024, 17, 2112. [Google Scholar] [CrossRef]
- Infante, A.; Rodríguez, C.I. Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Res. Ther. 2018, 9, 244. [Google Scholar] [CrossRef]
- Nasajpour, A.; Ansari, S.; Rinoldi, C.; Rad, A.S.; Aghaloo, T.; Shin, S.R.; Mishra, Y.K.; Adelung, R.; Swieszkowski, W.; Annabi, N.; et al. A Multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Adv. Funct. Mater. 2018, 28, 1703437. [Google Scholar] [CrossRef]
- He, X.; Huang, Z.; Liu, W.; Liu, Y.; Qian, H.; Lei, T.; Hua, L.; Hu, Y.; Zhang, Y.; Lei, P. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Colloids Surf. B Biointerfaces 2021, 204, 111825. [Google Scholar] [CrossRef]
- Higuchi, J.; Klimek, K.; Wojnarowicz, J.; Opali, A.; Chodara, A.; Szałaj, U.D.; Dabrowska, S.; Fudala, D.; Ginalska, G. Electrospun Membrane surface modification by sonocoating with HA and ZnO:Ag nanoparticles- characterization and evaluation of osteoblasts and bacterial cell behavior in vitro. Cells 2022, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cui, L.; Chang, X.; Guan, D. Biosynthesis and characterization of zinc oxide nanoparticles from Artemisia annua and investigate their effect on proliferation, osteogenic differentiation and mineralization in human osteoblast-like MG-63 Cells. J. Photochem. Photobiol. B Biol. 2020, 202, 111652. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, V.D. Zinc oxide nanoparticles from Cassia auriculata flowers showed the potent antimicrobial and in vitro anticancer activity against the osteosarcoma MG-63 cells. Saudi J. Biol. Sci. 2021, 28, 4046–4054. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, P.; Sivasamy, A. Preparation, characterization of Electrospun Polycaprolactone-nano zinc oxide composite scaffolds for osteogenic applications. Nano-Struct. Nano-Objects 2020, 23, 100518. [Google Scholar] [CrossRef]
Factor | Independent Variable | Code Level | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
X1 | Time (min) | 20 | 30 | 40 |
X2 | EtOH concentration (%) | 50 | 60 | 70 |
X3 | Temperature (°C) | 60 | 70 | 78 |
X4 | Power (W) | 500 | 600 | 700 |
X5 | Liquid/solid ratio (mL/g) | 80 | 100 | 120 |
X1 (min) | X2 (%) | X3 (°C) | X4 (W) | X5 (mL/g) | |
---|---|---|---|---|---|
| 30 | 60 | 70 | 600 | 100 |
| 10 | 100 | 20 | ||
| −0.6964 | 4.97 | 5.23 | −5.12 | 2.91 |
| 49.7 | −512 | 58.2 | ||
| 5 | −50 | 6 | ||
0 | 30 | 60 | 70 | 600 | 100 |
1 | 65 | 550 | 106 | ||
2 | 70 | 500 | 112 | ||
3 | 75 | 450 | 118 |
Run | X2: EtOH Concentration | X4: Power | X5: Solvent/Solid Ratio | Total Flavonoids |
---|---|---|---|---|
% | W | mL/g | mg/g QE | |
1 | 65 | 450 | 106 | 75.70 ± 1.25 |
2 | 75 | 450 | 106 | 79.97 ± 0.14 |
3 | 65 | 550 | 106 | 79.14 ± 0.15 |
4 | 75 | 550 | 106 | 76.47 ± 0.37 |
5 | 65 | 450 | 118 | 80.35 ± 0.64 |
6 | 75 | 450 | 118 | 83.20 ± 1.05 |
7 | 65 | 550 | 118 | 82.25 ± 0.53 |
8 | 75 | 550 | 118 | 77.37 ± 0.92 |
9 | 62 | 500 | 112 | 80.37 ± 0.81 |
10 | 78 | 500 | 112 | 75.59 ± 1.02 |
11 | 70 | 425 | 112 | 81.43 ± 0.09 |
12 | 70 | 575 | 112 | 78.94 ± 0.20 |
13 | 70 | 500 | 102 | 85.66 ± 1.03 |
14 | 70 | 500 | 122 | 83.82 ± 1.18 |
15 | 70 | 500 | 112 | 86.63 ± 0.47 |
16 | 70 | 500 | 112 | 86.61 ± 0.44 |
17 | 70 | 500 | 112 | 86.58 ± 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, K.-P.; Naruphontjirakul, P.; Chen, J.-H.; Ko, C.-S.; Lin, C.-W.; Su, W.-T. Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells. Materials 2025, 18, 2295. https://doi.org/10.3390/ma18102295
Hsieh K-P, Naruphontjirakul P, Chen J-H, Ko C-S, Lin C-W, Su W-T. Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells. Materials. 2025; 18(10):2295. https://doi.org/10.3390/ma18102295
Chicago/Turabian StyleHsieh, Kuei-Ping, Parichart Naruphontjirakul, Jen-Hao Chen, Chih-Sheng Ko, Chi-Wei Lin, and Wen-Ta Su. 2025. "Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells" Materials 18, no. 10: 2295. https://doi.org/10.3390/ma18102295
APA StyleHsieh, K.-P., Naruphontjirakul, P., Chen, J.-H., Ko, C.-S., Lin, C.-W., & Su, W.-T. (2025). Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells. Materials, 18(10), 2295. https://doi.org/10.3390/ma18102295