Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Material Synthesis
2.3. Material Characterization
2.4. Electrochemical Measurements
2.5. OER Test
2.6. GDE Half-Cell Test
2.7. Zn–Air Battery Test
3. Results and Discussion
3.1. Catalyst Physical Structure Characterization
3.2. Electrochemical Testing
3.3. GDE Half-Cell Testing
3.4. Zinc–Air Battery Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Wang, A.; Liu, Y.; Zhou, W.; Wen, H.; Zhang, H.; Sun, K.; Li, S.; Zhou, J.; Wang, Y.; et al. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. Adv. Sci. 2024, 11, 2308040. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, D.; Li, Y. Single-atom Catalysis for Carbon Neutrality. Carbon Energy 2022, 4, 1021–1079. [Google Scholar] [CrossRef]
- Rebrov, E.V.; Gao, P.-Z. Molecular Catalysts for OER/ORR in Zn–Air. Batter. Catal. 2023, 13, 1289. [Google Scholar] [CrossRef]
- Wang, L.; Huang, J.; Huang, J.; Yao, B.; Zhou, A.; Huang, Z.; Isimjan, T.T.; Wang, B.; Yang, X. Promoting Oxygen Reduction Reaction Kinetics through Manipulating Electron Redistribution in CoP/Cu3P@NC for Aqueous/Flexible Zn–Air Batteries. Green Chem. 2025, 27, 2276–2285. [Google Scholar] [CrossRef]
- Jangjooye Shaldehi, T.; Rowshanzamir, S.; Exner, K.S.; Viñes, F.; Illas, F. Conventional versus Un-conventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts. ACS Appl. Mater. Interfaces 2025, 17, 6450–6459. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liang, Q.; Song, K.; Zhou, X.; Liu, M.; Li, W.; Liu, F.; Jiang, Z.; Zou, X.; Chen, Z.; et al. Optimizing High-Coordination Shell of Co-Based Single-Atom Catalysts for Efficient ORR and Zinc-Air Batteries. J. Energy Chem. 2024, 95, 306–314. [Google Scholar] [CrossRef]
- Zhang, W.; Song, C.; Zhang, X.; Pu, Y.; Liu, Y. S-N Co-Doped Porous Carbon as Metal-Free ORR Electrocatalysts in Zinc-Air Batteries. Appl. Surf. Sci. 2025, 681, 161613. [Google Scholar] [CrossRef]
- Ruck, S.; Hutzler, A.; Lahn, L.; Kasian, O.; Thiele, S.; Pham, C.V.; Freiberg, A.T.S. Investigating H2 Gas-Promoted Ir Deposition on Pt Black Nanoparticles for Synthesizing a Bifunctional Catalyst for OER and ORR in Acidic Media. ACS Catal. 2025, 15, 3487–3498. [Google Scholar] [CrossRef]
- Heider, E.A.; Jacob, T.; Kibler, L.A. Platinum Overlayers on Pt Ru1−(111) Electrodes: Tailoring the ORR Activity by Lateral Strain and Ligand Effects. J. Electroanal. Chem. 2018, 819, 289–295. [Google Scholar] [CrossRef]
- Li, X.; Su, Z.; Zhao, Z.; Cai, Q.; Li, Y.; Zhao, J. Single Ir Atom Anchored in Pyrrolic-N4 Doped Gra-phene as a Promising Bifunctional Electrocatalyst for the ORR/OER: A Computational Study. J. Colloid Interface Sci. 2022, 607, 1005–1013. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, M.; Zhang, G.; Zhao, X.; Liu, Y.; Yang, X.; Yu, X.; Zhang, X.; Lu, Z.; Li, L. Ternary Ordered L10-Pt-Co-Fe Intermetallics for Efficient ORR Catalysis through Dissociation Pathway. Appl. Catal. B Environ. Energy 2025, 360, 124556. [Google Scholar] [CrossRef]
- Huang, J.; Ajmal, S.; Kumar, A.; Guo, J.; Mujahid Alam, M.; Al-Sehemi, A.G.; Yasin, G. Atomically Precise M-N-C Electrocatalysts for Oxygen Reduction: Effects of Inter-Site Distance, Metal-Metal Interaction, Coordination Environment, and Spin States. J. Energy Chem. 2025, 101, 132–155. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Z.; Li, C.; Shao, S.; Qin, G.; Meng, X. Organizational and Mechanistic Modulation of ORR/OER Activity in M1M2–N–C Bimetallic Catalysts. ACS Catal. 2025, 15, 432–446. [Google Scholar] [CrossRef]
- Feng, J.; Ma, C.; Zhang, Y.; Du, C.; Chen, Y.; Dong, H.; Yu, L.; Dong, L. Enhancing Oxygen Reduction and Evolution Reactions on Multi-Metal N-Doped Graphene Catalysts through Catalytic Activity and Selectivity Tuning. Appl. Surf. Sci. 2024, 651, 159219. [Google Scholar] [CrossRef]
- Liu, J.; Wan, X.; Liu, S.; Liu, X.; Zheng, L.; Yu, R.; Shui, J. Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements. Adv. Mater. 2021, 33, 2103600. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-Z.; Du, X.; Pang, Q.-Q.; Zhang, S.; Liu, Z.-Y.; Yue, X.-Z. In Situ Construction of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR. ACS Appl. Mater. Interfaces 2022, 14, 8549–8556. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xue, S.; Zhang, X.; Qin, J.; Hong, M.; Chen, Q.; Liu, W.; Du, C.; Chen, J. Mn Atomic Clus-ters and Fe Nanoparticles In-Situ Confined Nitrogen Carbon Nanotubes for Efficient and Durable ORR Electrocatalysts in Both Alkaline and Acidic Media. J. Alloys Compd. 2023, 953, 169992. [Google Scholar] [CrossRef]
- Lu, Z.; Gong, W.; Chen, J.; Guo, P.; Zhang, Y.; Zhang, L.; Yan, M.; Wu, C.; Sun, M.; Su, G.; et al. Molten Salt-Assisted Synthesis of Ferric Oxide/M–N–C Nanosheet Electrocatalysts for Efficient Ox-ygen Reduction Reaction. Small Methods 2024, 9, 2401278. [Google Scholar] [CrossRef]
- Zeng, Q.; Deng, N.; Wang, G.; Feng, Y.; Kang, W.; Cheng, B. In Situ Growth of Sur-face-Reconstructed Aluminum Fluoride Nanoparticles on N, F Codoped Hierarchical Porous Carbon Nanofibers as Efficient ORR/OER Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries. J. Colloid Interface Sci. 2024, 654, 1063–1079. [Google Scholar] [CrossRef]
- Yan, P.; Liu, J.; Yuan, S.; Liu, Y.; Cen, W.; Chen, Y. The Promotion Effects of Graphitic and Pyridinic N Combinational Doping on Graphene for ORR. Appl. Surf. Sci. 2018, 445, 398–403. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, M.; Deng, C.; Shen, W.; He, R.; Li, M. Theoretical Insight into Single Rh Atoms An-chored on N-Doped γ-Graphyne as an Excellent Bifunctional Electrocatalyst for the OER and ORR: Electronic Regulation of Graphitic Nitrogen. Nanoscale 2021, 13, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, Y.; Li, L.; Li, Y.; Zhang, J.; Shao, G.; Zhang, P. Bead-like Cobalt-Nitrogen Co-Doped Carbon Nanocage/Carbon Nanofiber Composite: A High-Performance Oxygen Reduction Electrocat-alyst for Zinc-Air Batteries. Nano Res. 2023, 16, 545–554. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, M.; Zhang, G.; Hu, Y.; Liu, Y.; Yang, X.; Yu, X.; Zhang, X.; Lu, Z.; Li, L. Boosting ORR Activity via Bidirectional Regulation of the Electronic Structure by Coupling MnO/Mn3O4 Compo-site Materials with N-Doped Carbon. ACS Sustain. Chem. Eng. 2024, 12, 8425–8435. [Google Scholar] [CrossRef]
- Kumar, A.; Yasin, G.; Tabish, M.; Kumar Das, D.; Ajmal, S.; Kumar Nadda, A.; Zhang, G.; Mai-yalagan, T.; Saad, A.; Gupta, R.K.; et al. A Catalyst-Free Preparation of Conjugated Poly Iron-Phthalocyanine and Its Superior Oxygen Reduction Reaction Activity. Chem. Eng. J. 2022, 445, 136784. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, J.; Ma, L.; Jin, Z.; Ge, J.; Deng, X.; Hou, Y.; He, Q.; Li, J.; Jia, Q.; et al. Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N4 Active Site Identification Revealed by X-Ray Absorption Spectroscopy. ACS Catal. 2018, 8, 2824–2832. [Google Scholar] [CrossRef]
- Wang, X.X.; Prabhakaran, V.; He, Y.; Shao, Y.; Wu, G. Iron-Free Cathode Catalysts for Proton-Exchange-Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach. Adv. Mater. 2019, 31, 1805126. [Google Scholar] [CrossRef]
- Li, X.; You, S.; Du, J.; Dai, Y.; Chen, H.; Cai, Z.; Ren, N.; Zou, J. ZIF-67-Derived Co3O4 @carbon Protected by Oxygen-Buffering CeO2 as an Efficient Catalyst for Boosting Oxygen Reduction/Evolution Reactions. J. Mater. Chem. A 2019, 7, 25853–25864. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, Y.; Wei, X.; Luo, X.; Jiang, W.; Zheng, L.; Gu, W.; Zhu, C.; Yamauchi, Y. Improvement in ORR Durability of Fe Single-Atom Carbon Catalysts Hybridized with CeO2 Nanozyme. Nano Lett. 2024, 24, 9034–9041. [Google Scholar] [CrossRef]
- Rezaei, A.; Zarenezhad, H.; Aber, S.; Teimuri-Mofrad, R. Synergistic ORR Catalysis: WS2/CeO2 Composite in Microbial Fuel Cells. Process Saf. Environ. Prot. 2024, 183, 1002–1012. [Google Scholar] [CrossRef]
- Tu, F.-D.; Wu, Z.-Y.; Guo, P.; Shen, L.-X.; Zhang, Z.-Y.; Dai, Y.-K.; Ma, M.; Liu, J.; Xu, B.; Zhang, Y.-L.; et al. Fe-N-C Catalysts Decorated with Oxygen Vacancies-Rich CeOx to Increase Oxygen Re-duction Performance for Zn-Air Batteries. J. Colloid Interface Sci. 2023, 637, 10–19. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chang, M.-H.; Wang, T.-W.; Wang, M.-S. Electrospun Bimetallic PtNi Nanowires as Electrocatalyst for Oxygen Reduction Reaction in PEMFCs. Int. J. Hydrogen Energy. 2024, 51, 1487–1496. [Google Scholar] [CrossRef]
- Bssi, K.; Sala, A.; Atourki, L.; Soussi, A.; Elfanaoui, A.; Kirou, H.; Hssi, A.A.; Bouabid, K.; Gilioli, E.; Ihlal, A. Electrodeposited CuSbSe2 Thin Films Based Solar Cells on Various Substrates. J. Nanopart. Res. 2022, 24, 221. [Google Scholar] [CrossRef]
- Wu, K.; Wang, D.; Fu, Q.; Xu, T.; Xiong, Q.; Peera, S.G.; Liu, C. Co/Ce-MOF-Derived Oxygen Elec-trode Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. Inorg. Chem. 2024, 63, 11135–11145. [Google Scholar] [CrossRef]
- Wang, H.; Sun, C.; Zhu, E.; Shi, C.; Yu, J.; Xu, M. Core-Shell MOF-Derived Fe3C-Co-NC as High-Performance ORR/OER Bifunctional Catalyst. J. Alloys Compd. 2023, 948, 169728. [Google Scholar] [CrossRef]
- Shui, Y.; Deng, N.; Wang, Y.; Wang, G.; Chi, H.; Zeng, Q.; Peng, Z.; Cheng, B.; Kang, W. Recent Progress on MOFs and Their Derivative-Carbon Fiber Composite Materials for Oxygen Electrocatalysis. J. Mater. Chem. A 2024, 12, 20655–20690. [Google Scholar] [CrossRef]
- Li, S.; Feng, C.; Xie, Y.; Guo, C.; Zhang, L.; Wang, J. Synthesis of Nitrogen-Rich Porous Carbon Nanotubes Coated Co Nanomaterials as Efficient ORR Electrocatalysts via MOFs as Precursor. J. Alloys Compd. 2022, 911, 165060. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Wang, L.; Yuan, Y.; Zhu, K.; Zhang, Q.; Yang, L.; Lu, J.; Bai, Z. Suppressing Ther-mal Migration by Fine-Tuned Metal-Support Interaction of Iron Single-Atom Catalyst for Efficient ORR. Adv. Funct. Mater. 2023, 33, 2304277. [Google Scholar] [CrossRef]
- Chen, J.-Q.; Esrafili, L.; Parsa, F.; Sun, A.-N.; Hu, M.-L.; Morsali, A.; Retailleau, P.; Guo, Z.; Junk, P.C. Multi-Functionalized MOFs with Large-Pore Apertures as Luminescent Probes for Efficient Sensing of Quinones. New J. Chem. 2023, 47, 4920–4930. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Zhu, X.; Zhang, J.; Jing, Y. Conductive Two-Dimensional M3(C6S3O3)2 Monolayers as Effective Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Chem. A 2021, 9, 24887–24894. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, E.; Shi, C.; Yu, J.; Yin, S.; Liu, C.; Cui, X.; Liu, W.; Xu, M. High-Performance MnO/N-rGO Catalyst for Half-Cell and Zn-Air Batteries by Photochemically Assisted Synthesis. Ceram. Int. 2023, 49, 13972–13981. [Google Scholar] [CrossRef]
- Wang, F.; Li, Q.; Xiao, Z.; Jiang, B.; Ren, J.; Jin, Z.; Tang, X.; Chen, Y.; Li, X. Conversion of Rice Husk Biomass into Electrocatalyst for Oxygen Reduction Reaction in Zn-Air Battery: Effect of Self-Doped Si on Performance. J. Colloid Interface Sci. 2022, 606, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Huang, W.; Gao, Z.; Liu, M.; Huang, N. Research on ORR and OER Performance of Co Based Catalyst from ZIF-67. Appl. Mater. Today 2025, 42, 102576. [Google Scholar] [CrossRef]
- Zhu, X.; Xie, S.; Fu, X.; Zhu, S.; Min, Y.; Xu, Q.; Li, Q. High-Dispersion Co/N/C Ultra-Thin Carbon Nanosheets Modified with Trace Ce as Efficient Oxygen Reduction Reaction Catalysts. New J. Chem. 2023, 47, 9153–9163. [Google Scholar] [CrossRef]
- Zhu, E.; Sun, C.; Shi, C.; Yu, J.; Yang, X.; Xu, M. Isolated Single-Atom Fe-N4O1 Catalytic Site from a Pre-Oxidation Strategy for Efficient Oxygen Reduction Reaction. Chem. Eng. J. 2023, 463, 142468. [Google Scholar] [CrossRef]
- Wen, G.-L.; Niu, H.-J.; Feng, J.-J.; Luo, X.; Weng, X.; Wang, A.-J. Well-Dispersed Co3Fe7 Alloy Nanoparticles Wrapped in N-Doped Defect-Rich Carbon Nanosheets as a Highly Efficient and Methanol-Resistant Catalyst for Oxygen-Reduction Reaction. J. Colloid Interface Sci. 2020, 569, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, T.; Zhong, Q.; Qu, H. Constructing Co/Fe-Nx Dual-Site Catalyst Based on Co0.72Fe0.28 Alloy Nanoparticles Anchored on Hollow Hierarchical Porous Carbon Framework for Enhanced Oxygen Reduction Reaction and ZABs. J. Alloys Compd. 2023, 958, 170447. [Google Scholar] [CrossRef]
- He, X.; Chang, L.; Wu, H.; Liu, G.; Zhang, Y.; Zhou, A. Design of ZIF-67-Derived Fe, N and F Co-Doped Porous Carbon Material and Evaluation of Its ORR and OER Performance. J. Alloys Compd. 2023, 967, 171709. [Google Scholar] [CrossRef]
- Huang, Z.-X.; Wu, D.-H.; Chen, M.-T.; Feng, J.-J.; Wang, A.-J. Confinement Pyrolysis of FeCo Dual-Single Atoms Electrocatalyst for Significantly Boosting Oxygen Reduction Reaction and Rechargeable Zn-Air Battery. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132567. [Google Scholar] [CrossRef]
- Feng, R.; Ruan, Q.-D.; Feng, J.-J.; Yao, Y.-Q.; Li, L.-M.; Zhang, L.; Wang, A.-J. Facile Pyrolysis Synthesis of Abundant FeCo Dual-Single Atoms Anchored on N-Doped Carbon Nanocages for Synergistically Boosting Oxygen Reduction Reaction. J. Colloid Interface Sci. 2024, 654, 1240–1250. [Google Scholar] [CrossRef]
- Wu, M.; Xie, J.; Liu, A.; Jia, W.; Cao, Y. Iron Carbide/Nitrogen-Doped Carbon Core-Shell Nanostrctures: Solution-Free Synthesis and Superior Oxygen Reduction Performance. J. Colloid Interface Sci. 2020, 566, 194–201. [Google Scholar] [CrossRef]
- Meng, H.; Pei, S.; Li, H.; Zhang, Y. CoFe/N, S–C Featured with Graphitic Nanoribbons and Multiple CoFe Nanoparticles as Highly Stable and Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Omega 2021, 6, 11059–11067. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, G.; Liu, X.; Yu, Q.; Mao, H.; Xiao, Z.; Wang, L. 1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc–Air Battery and Self-Powered Overall Water Splitting. Adv. Funct. Mater. 2022, 32, 2107608. [Google Scholar] [CrossRef]
- Song, S.; Li, W.; Deng, Y.-P.; Ruan, Y.; Zhang, Y.; Qin, X.; Chen, Z. TiC Supported Amorphous MnOx as Highly Efficient Bifunctional Electrocatalyst for Corrosion Resistant Oxygen Electrode of Zn-Air Batteries. Nano Energy 2020, 67, 104208. [Google Scholar] [CrossRef]
- Qing, B.; Liu, Y.; Yang, D.; Yang, M.; Liu, B.; Chen, H.; Li, H. Decrypting Synergy of Alloy & Metal Nanoparticles Within Nitrogen-Doped Carbon Nanosheets for Zn-Air Batteries with Ultralong Cycling Stability. Small Methods 2024, 9, 2401338. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, Q.; Li, B.; Cai, D.; Wu, W. Preparation of Bifunctional Oxygen Evolution Reaction and Oxygen Reduction Reaction Catalyst CoO-TiO2@NG by High Gravity-Hydrothermal Method for Rechargeable Zn Air Battery. J. Power Sources 2025, 625, 235675. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Wang, B.; Jing, Z.; Ding, D.; Yang, X.; Kong, Y.; Dou, J.; Mamoor, M.; Xu, L. Cognate Cobalt Core-Shell Structure Decorated Nitrogen-Doped Hollow Carbon Bowls Triggering Advanced Zinc-Air Battery. Adv. Funct. Mater. 2024, 35, 2415326. [Google Scholar] [CrossRef]
- Lin, C.; Yin, Y.; Wang, G.; Cao, X.; Ma, J. Carbon-Coated ZnS as a High-Performance ORR/OER Bifunctional Cathode Catalyst for Zinc-Air Batteries. Int. J. Hydrog. Energy 2024, 93, 221–228. [Google Scholar] [CrossRef]
- Jang, E.; Cho, J.; Kim, J.; Kim, J. WC Nanoparticles and NiFe Alloy Co-Encapsulated in N-Doped Carbon Nanocage for Exceptional OER and ORR Bifunctional Electrocatalysis. Appl. Surf. Sci. 2024, 663, 160201. [Google Scholar] [CrossRef]
- Hao, M.; Li, T.; Lin, L.; Zhang, X.; Huo, C.; Zhang, X.; Liu, X.; Zhu, Y.; Zhang, W. Hollow Ti3C2Tx MXene Sphere-Based ZIF-67 Derived Central Radiative Cobalt-Tipped Carbon Nanotubes Electrocatalysts for ORR and OER. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133626. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Xiao, X.; Ma, X.; Xu, X.; Yin, Y.; Zhang, B.; Ding, M.; Zou, J.; Jiang, B. CoTe2/NiTe2 Heterojunction Embedded in N-Doped Hollow Carbon Nanoboxes as High-Efficient ORR/OER Catalyst for Rechargeable Zinc-Air Battery. Chem. Eng. J. 2024, 486, 150256. [Google Scholar] [CrossRef]
- Akbarian, P.; Eshghi, A.; Asadi, A.; Kheirmand, M. Pd–Co₃O₄/Acetylene Black Nanocomposite as an Efficient and Robust Bifunctional ORR/OER Electrocatalyst for Rechargeable Zinc-Air Batteries. Int. J. Hydrog. Energy 2024, 91, 1103–1112. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, C.; Li, L.; Yan, X.; Zhang, N.; Bao, J. Fe Based MOF Encapsulating Triethylenediamine Cobalt Complex to Prepare a FeN3-CoN3 Dual-Atom Catalyst for Efficient ORR in Zn-Air Batteries. J. Colloid Interface Sci. 2024, 676, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhong, Z.; Shi, Z.; Zhou, L.; Pan, S.; Xu, X.; Liu, Y.; Xiong, D.; Wang, K. Dual-Ligand Engineered CoNi Alloy/N-Doped Carbon Nanotubes Bifunctional ORR/OER Electrocatalyst for Long-Lifespan Rechargeable Zn-Air Batteries. J. Colloid Interface Sci. 2025, 683, 631–640. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Shi, C.; Wang, H.; Wei, D.; Jin, H.; Li, H.; Meng, Z.; Xu, M. Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis. Materials 2025, 18, 2251. https://doi.org/10.3390/ma18102251
Zhou L, Shi C, Wang H, Wei D, Jin H, Li H, Meng Z, Xu M. Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis. Materials. 2025; 18(10):2251. https://doi.org/10.3390/ma18102251
Chicago/Turabian StyleZhou, Linxiang, Chaoyang Shi, Huaqi Wang, Danyang Wei, Haodong Jin, Haoqi Li, Zhiwei Meng, and Mingli Xu. 2025. "Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis" Materials 18, no. 10: 2251. https://doi.org/10.3390/ma18102251
APA StyleZhou, L., Shi, C., Wang, H., Wei, D., Jin, H., Li, H., Meng, Z., & Xu, M. (2025). Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis. Materials, 18(10), 2251. https://doi.org/10.3390/ma18102251