Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Material Synthesis
2.3. Material Characterization
2.4. Electrochemical Measurements
2.5. OER Test
2.6. GDE Half-Cell Test
2.7. Zn–Air Battery Test
3. Results and Discussion
3.1. Catalyst Physical Structure Characterization
3.2. Electrochemical Testing
3.3. GDE Half-Cell Testing
3.4. Zinc–Air Battery Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Wang, A.; Liu, Y.; Zhou, W.; Wen, H.; Zhang, H.; Sun, K.; Li, S.; Zhou, J.; Wang, Y.; et al. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. Adv. Sci. 2024, 11, 2308040. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, D.; Li, Y. Single-atom Catalysis for Carbon Neutrality. Carbon Energy 2022, 4, 1021–1079. [Google Scholar] [CrossRef]
- Rebrov, E.V.; Gao, P.-Z. Molecular Catalysts for OER/ORR in Zn–Air. Batter. Catal. 2023, 13, 1289. [Google Scholar] [CrossRef]
- Wang, L.; Huang, J.; Huang, J.; Yao, B.; Zhou, A.; Huang, Z.; Isimjan, T.T.; Wang, B.; Yang, X. Promoting Oxygen Reduction Reaction Kinetics through Manipulating Electron Redistribution in CoP/Cu3P@NC for Aqueous/Flexible Zn–Air Batteries. Green Chem. 2025, 27, 2276–2285. [Google Scholar] [CrossRef]
- Jangjooye Shaldehi, T.; Rowshanzamir, S.; Exner, K.S.; Viñes, F.; Illas, F. Conventional versus Un-conventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts. ACS Appl. Mater. Interfaces 2025, 17, 6450–6459. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liang, Q.; Song, K.; Zhou, X.; Liu, M.; Li, W.; Liu, F.; Jiang, Z.; Zou, X.; Chen, Z.; et al. Optimizing High-Coordination Shell of Co-Based Single-Atom Catalysts for Efficient ORR and Zinc-Air Batteries. J. Energy Chem. 2024, 95, 306–314. [Google Scholar] [CrossRef]
- Zhang, W.; Song, C.; Zhang, X.; Pu, Y.; Liu, Y. S-N Co-Doped Porous Carbon as Metal-Free ORR Electrocatalysts in Zinc-Air Batteries. Appl. Surf. Sci. 2025, 681, 161613. [Google Scholar] [CrossRef]
- Ruck, S.; Hutzler, A.; Lahn, L.; Kasian, O.; Thiele, S.; Pham, C.V.; Freiberg, A.T.S. Investigating H2 Gas-Promoted Ir Deposition on Pt Black Nanoparticles for Synthesizing a Bifunctional Catalyst for OER and ORR in Acidic Media. ACS Catal. 2025, 15, 3487–3498. [Google Scholar] [CrossRef]
- Heider, E.A.; Jacob, T.; Kibler, L.A. Platinum Overlayers on Pt Ru1−(111) Electrodes: Tailoring the ORR Activity by Lateral Strain and Ligand Effects. J. Electroanal. Chem. 2018, 819, 289–295. [Google Scholar] [CrossRef]
- Li, X.; Su, Z.; Zhao, Z.; Cai, Q.; Li, Y.; Zhao, J. Single Ir Atom Anchored in Pyrrolic-N4 Doped Gra-phene as a Promising Bifunctional Electrocatalyst for the ORR/OER: A Computational Study. J. Colloid Interface Sci. 2022, 607, 1005–1013. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, M.; Zhang, G.; Zhao, X.; Liu, Y.; Yang, X.; Yu, X.; Zhang, X.; Lu, Z.; Li, L. Ternary Ordered L10-Pt-Co-Fe Intermetallics for Efficient ORR Catalysis through Dissociation Pathway. Appl. Catal. B Environ. Energy 2025, 360, 124556. [Google Scholar] [CrossRef]
- Huang, J.; Ajmal, S.; Kumar, A.; Guo, J.; Mujahid Alam, M.; Al-Sehemi, A.G.; Yasin, G. Atomically Precise M-N-C Electrocatalysts for Oxygen Reduction: Effects of Inter-Site Distance, Metal-Metal Interaction, Coordination Environment, and Spin States. J. Energy Chem. 2025, 101, 132–155. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Z.; Li, C.; Shao, S.; Qin, G.; Meng, X. Organizational and Mechanistic Modulation of ORR/OER Activity in M1M2–N–C Bimetallic Catalysts. ACS Catal. 2025, 15, 432–446. [Google Scholar] [CrossRef]
- Feng, J.; Ma, C.; Zhang, Y.; Du, C.; Chen, Y.; Dong, H.; Yu, L.; Dong, L. Enhancing Oxygen Reduction and Evolution Reactions on Multi-Metal N-Doped Graphene Catalysts through Catalytic Activity and Selectivity Tuning. Appl. Surf. Sci. 2024, 651, 159219. [Google Scholar] [CrossRef]
- Liu, J.; Wan, X.; Liu, S.; Liu, X.; Zheng, L.; Yu, R.; Shui, J. Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements. Adv. Mater. 2021, 33, 2103600. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-Z.; Du, X.; Pang, Q.-Q.; Zhang, S.; Liu, Z.-Y.; Yue, X.-Z. In Situ Construction of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR. ACS Appl. Mater. Interfaces 2022, 14, 8549–8556. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xue, S.; Zhang, X.; Qin, J.; Hong, M.; Chen, Q.; Liu, W.; Du, C.; Chen, J. Mn Atomic Clus-ters and Fe Nanoparticles In-Situ Confined Nitrogen Carbon Nanotubes for Efficient and Durable ORR Electrocatalysts in Both Alkaline and Acidic Media. J. Alloys Compd. 2023, 953, 169992. [Google Scholar] [CrossRef]
- Lu, Z.; Gong, W.; Chen, J.; Guo, P.; Zhang, Y.; Zhang, L.; Yan, M.; Wu, C.; Sun, M.; Su, G.; et al. Molten Salt-Assisted Synthesis of Ferric Oxide/M–N–C Nanosheet Electrocatalysts for Efficient Ox-ygen Reduction Reaction. Small Methods 2024, 9, 2401278. [Google Scholar] [CrossRef]
- Zeng, Q.; Deng, N.; Wang, G.; Feng, Y.; Kang, W.; Cheng, B. In Situ Growth of Sur-face-Reconstructed Aluminum Fluoride Nanoparticles on N, F Codoped Hierarchical Porous Carbon Nanofibers as Efficient ORR/OER Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries. J. Colloid Interface Sci. 2024, 654, 1063–1079. [Google Scholar] [CrossRef]
- Yan, P.; Liu, J.; Yuan, S.; Liu, Y.; Cen, W.; Chen, Y. The Promotion Effects of Graphitic and Pyridinic N Combinational Doping on Graphene for ORR. Appl. Surf. Sci. 2018, 445, 398–403. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, M.; Deng, C.; Shen, W.; He, R.; Li, M. Theoretical Insight into Single Rh Atoms An-chored on N-Doped γ-Graphyne as an Excellent Bifunctional Electrocatalyst for the OER and ORR: Electronic Regulation of Graphitic Nitrogen. Nanoscale 2021, 13, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, Y.; Li, L.; Li, Y.; Zhang, J.; Shao, G.; Zhang, P. Bead-like Cobalt-Nitrogen Co-Doped Carbon Nanocage/Carbon Nanofiber Composite: A High-Performance Oxygen Reduction Electrocat-alyst for Zinc-Air Batteries. Nano Res. 2023, 16, 545–554. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, M.; Zhang, G.; Hu, Y.; Liu, Y.; Yang, X.; Yu, X.; Zhang, X.; Lu, Z.; Li, L. Boosting ORR Activity via Bidirectional Regulation of the Electronic Structure by Coupling MnO/Mn3O4 Compo-site Materials with N-Doped Carbon. ACS Sustain. Chem. Eng. 2024, 12, 8425–8435. [Google Scholar] [CrossRef]
- Kumar, A.; Yasin, G.; Tabish, M.; Kumar Das, D.; Ajmal, S.; Kumar Nadda, A.; Zhang, G.; Mai-yalagan, T.; Saad, A.; Gupta, R.K.; et al. A Catalyst-Free Preparation of Conjugated Poly Iron-Phthalocyanine and Its Superior Oxygen Reduction Reaction Activity. Chem. Eng. J. 2022, 445, 136784. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, J.; Ma, L.; Jin, Z.; Ge, J.; Deng, X.; Hou, Y.; He, Q.; Li, J.; Jia, Q.; et al. Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N4 Active Site Identification Revealed by X-Ray Absorption Spectroscopy. ACS Catal. 2018, 8, 2824–2832. [Google Scholar] [CrossRef]
- Wang, X.X.; Prabhakaran, V.; He, Y.; Shao, Y.; Wu, G. Iron-Free Cathode Catalysts for Proton-Exchange-Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach. Adv. Mater. 2019, 31, 1805126. [Google Scholar] [CrossRef]
- Li, X.; You, S.; Du, J.; Dai, Y.; Chen, H.; Cai, Z.; Ren, N.; Zou, J. ZIF-67-Derived Co3O4 @carbon Protected by Oxygen-Buffering CeO2 as an Efficient Catalyst for Boosting Oxygen Reduction/Evolution Reactions. J. Mater. Chem. A 2019, 7, 25853–25864. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, Y.; Wei, X.; Luo, X.; Jiang, W.; Zheng, L.; Gu, W.; Zhu, C.; Yamauchi, Y. Improvement in ORR Durability of Fe Single-Atom Carbon Catalysts Hybridized with CeO2 Nanozyme. Nano Lett. 2024, 24, 9034–9041. [Google Scholar] [CrossRef]
- Rezaei, A.; Zarenezhad, H.; Aber, S.; Teimuri-Mofrad, R. Synergistic ORR Catalysis: WS2/CeO2 Composite in Microbial Fuel Cells. Process Saf. Environ. Prot. 2024, 183, 1002–1012. [Google Scholar] [CrossRef]
- Tu, F.-D.; Wu, Z.-Y.; Guo, P.; Shen, L.-X.; Zhang, Z.-Y.; Dai, Y.-K.; Ma, M.; Liu, J.; Xu, B.; Zhang, Y.-L.; et al. Fe-N-C Catalysts Decorated with Oxygen Vacancies-Rich CeOx to Increase Oxygen Re-duction Performance for Zn-Air Batteries. J. Colloid Interface Sci. 2023, 637, 10–19. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chang, M.-H.; Wang, T.-W.; Wang, M.-S. Electrospun Bimetallic PtNi Nanowires as Electrocatalyst for Oxygen Reduction Reaction in PEMFCs. Int. J. Hydrogen Energy. 2024, 51, 1487–1496. [Google Scholar] [CrossRef]
- Bssi, K.; Sala, A.; Atourki, L.; Soussi, A.; Elfanaoui, A.; Kirou, H.; Hssi, A.A.; Bouabid, K.; Gilioli, E.; Ihlal, A. Electrodeposited CuSbSe2 Thin Films Based Solar Cells on Various Substrates. J. Nanopart. Res. 2022, 24, 221. [Google Scholar] [CrossRef]
- Wu, K.; Wang, D.; Fu, Q.; Xu, T.; Xiong, Q.; Peera, S.G.; Liu, C. Co/Ce-MOF-Derived Oxygen Elec-trode Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. Inorg. Chem. 2024, 63, 11135–11145. [Google Scholar] [CrossRef]
- Wang, H.; Sun, C.; Zhu, E.; Shi, C.; Yu, J.; Xu, M. Core-Shell MOF-Derived Fe3C-Co-NC as High-Performance ORR/OER Bifunctional Catalyst. J. Alloys Compd. 2023, 948, 169728. [Google Scholar] [CrossRef]
- Shui, Y.; Deng, N.; Wang, Y.; Wang, G.; Chi, H.; Zeng, Q.; Peng, Z.; Cheng, B.; Kang, W. Recent Progress on MOFs and Their Derivative-Carbon Fiber Composite Materials for Oxygen Electrocatalysis. J. Mater. Chem. A 2024, 12, 20655–20690. [Google Scholar] [CrossRef]
- Li, S.; Feng, C.; Xie, Y.; Guo, C.; Zhang, L.; Wang, J. Synthesis of Nitrogen-Rich Porous Carbon Nanotubes Coated Co Nanomaterials as Efficient ORR Electrocatalysts via MOFs as Precursor. J. Alloys Compd. 2022, 911, 165060. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Wang, L.; Yuan, Y.; Zhu, K.; Zhang, Q.; Yang, L.; Lu, J.; Bai, Z. Suppressing Ther-mal Migration by Fine-Tuned Metal-Support Interaction of Iron Single-Atom Catalyst for Efficient ORR. Adv. Funct. Mater. 2023, 33, 2304277. [Google Scholar] [CrossRef]
- Chen, J.-Q.; Esrafili, L.; Parsa, F.; Sun, A.-N.; Hu, M.-L.; Morsali, A.; Retailleau, P.; Guo, Z.; Junk, P.C. Multi-Functionalized MOFs with Large-Pore Apertures as Luminescent Probes for Efficient Sensing of Quinones. New J. Chem. 2023, 47, 4920–4930. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Zhu, X.; Zhang, J.; Jing, Y. Conductive Two-Dimensional M3(C6S3O3)2 Monolayers as Effective Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Chem. A 2021, 9, 24887–24894. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, E.; Shi, C.; Yu, J.; Yin, S.; Liu, C.; Cui, X.; Liu, W.; Xu, M. High-Performance MnO/N-rGO Catalyst for Half-Cell and Zn-Air Batteries by Photochemically Assisted Synthesis. Ceram. Int. 2023, 49, 13972–13981. [Google Scholar] [CrossRef]
- Wang, F.; Li, Q.; Xiao, Z.; Jiang, B.; Ren, J.; Jin, Z.; Tang, X.; Chen, Y.; Li, X. Conversion of Rice Husk Biomass into Electrocatalyst for Oxygen Reduction Reaction in Zn-Air Battery: Effect of Self-Doped Si on Performance. J. Colloid Interface Sci. 2022, 606, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Huang, W.; Gao, Z.; Liu, M.; Huang, N. Research on ORR and OER Performance of Co Based Catalyst from ZIF-67. Appl. Mater. Today 2025, 42, 102576. [Google Scholar] [CrossRef]
- Zhu, X.; Xie, S.; Fu, X.; Zhu, S.; Min, Y.; Xu, Q.; Li, Q. High-Dispersion Co/N/C Ultra-Thin Carbon Nanosheets Modified with Trace Ce as Efficient Oxygen Reduction Reaction Catalysts. New J. Chem. 2023, 47, 9153–9163. [Google Scholar] [CrossRef]
- Zhu, E.; Sun, C.; Shi, C.; Yu, J.; Yang, X.; Xu, M. Isolated Single-Atom Fe-N4O1 Catalytic Site from a Pre-Oxidation Strategy for Efficient Oxygen Reduction Reaction. Chem. Eng. J. 2023, 463, 142468. [Google Scholar] [CrossRef]
- Wen, G.-L.; Niu, H.-J.; Feng, J.-J.; Luo, X.; Weng, X.; Wang, A.-J. Well-Dispersed Co3Fe7 Alloy Nanoparticles Wrapped in N-Doped Defect-Rich Carbon Nanosheets as a Highly Efficient and Methanol-Resistant Catalyst for Oxygen-Reduction Reaction. J. Colloid Interface Sci. 2020, 569, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, T.; Zhong, Q.; Qu, H. Constructing Co/Fe-Nx Dual-Site Catalyst Based on Co0.72Fe0.28 Alloy Nanoparticles Anchored on Hollow Hierarchical Porous Carbon Framework for Enhanced Oxygen Reduction Reaction and ZABs. J. Alloys Compd. 2023, 958, 170447. [Google Scholar] [CrossRef]
- He, X.; Chang, L.; Wu, H.; Liu, G.; Zhang, Y.; Zhou, A. Design of ZIF-67-Derived Fe, N and F Co-Doped Porous Carbon Material and Evaluation of Its ORR and OER Performance. J. Alloys Compd. 2023, 967, 171709. [Google Scholar] [CrossRef]
- Huang, Z.-X.; Wu, D.-H.; Chen, M.-T.; Feng, J.-J.; Wang, A.-J. Confinement Pyrolysis of FeCo Dual-Single Atoms Electrocatalyst for Significantly Boosting Oxygen Reduction Reaction and Rechargeable Zn-Air Battery. Colloids Surf. A Physicochem. Eng. Asp. 2023, 679, 132567. [Google Scholar] [CrossRef]
- Feng, R.; Ruan, Q.-D.; Feng, J.-J.; Yao, Y.-Q.; Li, L.-M.; Zhang, L.; Wang, A.-J. Facile Pyrolysis Synthesis of Abundant FeCo Dual-Single Atoms Anchored on N-Doped Carbon Nanocages for Synergistically Boosting Oxygen Reduction Reaction. J. Colloid Interface Sci. 2024, 654, 1240–1250. [Google Scholar] [CrossRef]
- Wu, M.; Xie, J.; Liu, A.; Jia, W.; Cao, Y. Iron Carbide/Nitrogen-Doped Carbon Core-Shell Nanostrctures: Solution-Free Synthesis and Superior Oxygen Reduction Performance. J. Colloid Interface Sci. 2020, 566, 194–201. [Google Scholar] [CrossRef]
- Meng, H.; Pei, S.; Li, H.; Zhang, Y. CoFe/N, S–C Featured with Graphitic Nanoribbons and Multiple CoFe Nanoparticles as Highly Stable and Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Omega 2021, 6, 11059–11067. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, G.; Liu, X.; Yu, Q.; Mao, H.; Xiao, Z.; Wang, L. 1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc–Air Battery and Self-Powered Overall Water Splitting. Adv. Funct. Mater. 2022, 32, 2107608. [Google Scholar] [CrossRef]
- Song, S.; Li, W.; Deng, Y.-P.; Ruan, Y.; Zhang, Y.; Qin, X.; Chen, Z. TiC Supported Amorphous MnOx as Highly Efficient Bifunctional Electrocatalyst for Corrosion Resistant Oxygen Electrode of Zn-Air Batteries. Nano Energy 2020, 67, 104208. [Google Scholar] [CrossRef]
- Qing, B.; Liu, Y.; Yang, D.; Yang, M.; Liu, B.; Chen, H.; Li, H. Decrypting Synergy of Alloy & Metal Nanoparticles Within Nitrogen-Doped Carbon Nanosheets for Zn-Air Batteries with Ultralong Cycling Stability. Small Methods 2024, 9, 2401338. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, Q.; Li, B.; Cai, D.; Wu, W. Preparation of Bifunctional Oxygen Evolution Reaction and Oxygen Reduction Reaction Catalyst CoO-TiO2@NG by High Gravity-Hydrothermal Method for Rechargeable Zn Air Battery. J. Power Sources 2025, 625, 235675. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Wang, B.; Jing, Z.; Ding, D.; Yang, X.; Kong, Y.; Dou, J.; Mamoor, M.; Xu, L. Cognate Cobalt Core-Shell Structure Decorated Nitrogen-Doped Hollow Carbon Bowls Triggering Advanced Zinc-Air Battery. Adv. Funct. Mater. 2024, 35, 2415326. [Google Scholar] [CrossRef]
- Lin, C.; Yin, Y.; Wang, G.; Cao, X.; Ma, J. Carbon-Coated ZnS as a High-Performance ORR/OER Bifunctional Cathode Catalyst for Zinc-Air Batteries. Int. J. Hydrog. Energy 2024, 93, 221–228. [Google Scholar] [CrossRef]
- Jang, E.; Cho, J.; Kim, J.; Kim, J. WC Nanoparticles and NiFe Alloy Co-Encapsulated in N-Doped Carbon Nanocage for Exceptional OER and ORR Bifunctional Electrocatalysis. Appl. Surf. Sci. 2024, 663, 160201. [Google Scholar] [CrossRef]
- Hao, M.; Li, T.; Lin, L.; Zhang, X.; Huo, C.; Zhang, X.; Liu, X.; Zhu, Y.; Zhang, W. Hollow Ti3C2Tx MXene Sphere-Based ZIF-67 Derived Central Radiative Cobalt-Tipped Carbon Nanotubes Electrocatalysts for ORR and OER. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133626. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Xiao, X.; Ma, X.; Xu, X.; Yin, Y.; Zhang, B.; Ding, M.; Zou, J.; Jiang, B. CoTe2/NiTe2 Heterojunction Embedded in N-Doped Hollow Carbon Nanoboxes as High-Efficient ORR/OER Catalyst for Rechargeable Zinc-Air Battery. Chem. Eng. J. 2024, 486, 150256. [Google Scholar] [CrossRef]
- Akbarian, P.; Eshghi, A.; Asadi, A.; Kheirmand, M. Pd–Co₃O₄/Acetylene Black Nanocomposite as an Efficient and Robust Bifunctional ORR/OER Electrocatalyst for Rechargeable Zinc-Air Batteries. Int. J. Hydrog. Energy 2024, 91, 1103–1112. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, C.; Li, L.; Yan, X.; Zhang, N.; Bao, J. Fe Based MOF Encapsulating Triethylenediamine Cobalt Complex to Prepare a FeN3-CoN3 Dual-Atom Catalyst for Efficient ORR in Zn-Air Batteries. J. Colloid Interface Sci. 2024, 676, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhong, Z.; Shi, Z.; Zhou, L.; Pan, S.; Xu, X.; Liu, Y.; Xiong, D.; Wang, K. Dual-Ligand Engineered CoNi Alloy/N-Doped Carbon Nanotubes Bifunctional ORR/OER Electrocatalyst for Long-Lifespan Rechargeable Zn-Air Batteries. J. Colloid Interface Sci. 2025, 683, 631–640. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Shi, C.; Wang, H.; Wei, D.; Jin, H.; Li, H.; Meng, Z.; Xu, M. Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis. Materials 2025, 18, 2251. https://doi.org/10.3390/ma18102251
Zhou L, Shi C, Wang H, Wei D, Jin H, Li H, Meng Z, Xu M. Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis. Materials. 2025; 18(10):2251. https://doi.org/10.3390/ma18102251
Chicago/Turabian StyleZhou, Linxiang, Chaoyang Shi, Huaqi Wang, Danyang Wei, Haodong Jin, Haoqi Li, Zhiwei Meng, and Mingli Xu. 2025. "Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis" Materials 18, no. 10: 2251. https://doi.org/10.3390/ma18102251
APA StyleZhou, L., Shi, C., Wang, H., Wei, D., Jin, H., Li, H., Meng, Z., & Xu, M. (2025). Structural Engineering of Bimetallic CoCe-ZIF Derives Catalysts with Optimized Electronic Structure for Enhanced Oxygen Electrocatalysis. Materials, 18(10), 2251. https://doi.org/10.3390/ma18102251