Influence of the Milling Strategy on the Marginal Fit of Chairside-Fabricated Lithium Disilicate Crowns
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Three-Dimensional Marginal Surface Analysis
3.2. Two-Dimensional Virtual Cross-Sectional Analysis
4. Discussion
5. Conclusions
- ▪
- Choosing the faster milling strategy leads to higher marginal discrepancies, regardless of the material used
- ▪
- When fabricating crowns from IPS e.max CAD (Ivoclar Vivadent), choosing the fast milling strategy can result in clinically unacceptable marginal gap values
- ▪
- The smallest marginal discrepancies were achieved with the material IPS e.max CAD when the extra-fine milling strategy was selected
- ▪
- Both materials investigated are suitable for crown fabrication using the chairside technique if the appropriate milling strategy is applied
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Suganna, M.; Kausher, H.; Tarek Ahmed, S.; Sultan Alharbi, H.; Faraj Alsubaie, B.; Ds, A.; Haleem, S.; Meer Rownaq Ali, A.B. Contemporary Evidence of CAD-CAM in Dentistry: A Systematic Review. Cureus 2022, 14, e31687. [Google Scholar] [CrossRef] [PubMed]
- Krastev, T.; Payer, M.; Krastev, Z.; Cardelles, J.F.P.; Vegh, A.; Banyai, D.; Geczi, Z.; Vegh, D. The Utilisation of CAD/CAM Technology Amongst Austrian Dentists: A Pilot Study. Int. Dent. J. 2023, 73, 430–434. [Google Scholar] [CrossRef]
- Muhetaer, A.; Yang, H.Y.; Huang, C. Application of Chairside CAD/CAM and Its Influencing Factors among Chinese Dental Practitioners: A Crosssectional Study. Chin. J. Dent. Res. 2024, 27, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Nassani, M.Z.; Ibraheem, S.; Shamsy, E.; Darwish, M.; Faden, A.; Kujan, O. A Survey of Dentists’ Perception of Chair-Side CAD/CAM Technology. Healthcare 2021, 9, 68. [Google Scholar] [CrossRef]
- Abdullah, A.O.; Tsitrou, E.A.; Pollington, S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J. Appl. Oral Sci. 2016, 24, 258–263. [Google Scholar] [CrossRef]
- Aswal, G.S.; Rawat, R.; Dwivedi, D.; Prabhakar, N.; Kumar, V. Clinical Outcomes of CAD/CAM (Lithium disilicate and Zirconia) Based and Conventional Full Crowns and Fixed Partial Dentures: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e37888. [Google Scholar] [CrossRef]
- Li, R.W.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef]
- Pereira, R.M.; Ribas, R.G.; Montanheiro, T.; Schatkoski, V.M.; Rodrigues, K.F.; Kito, L.T.; Kobo, L.K.; Campos, T.M.B.; Bonfante, E.A.; Gierthmuehlen, P.C.; et al. An engineering perspective of ceramics applied in dental reconstructions. J. Appl. Oral Sci. 2023, 31, e20220421. [Google Scholar] [CrossRef]
- Fu, L.; Engqvist, H.; Xia, W. Glass-Ceramics in Dentistry: A Review. Materials 2020, 13, 1049. [Google Scholar] [CrossRef]
- Reich, S.; Endres, L.; Weber, C.; Wiedhahn, K.; Neumann, P.; Schneider, O.; Rafai, N.; Wolfart, S. Three-unit CAD/CAM-generated lithium disilicate FDPs after a mean observation time of 46 months. Clin. Oral Investig. 2014, 18, 2171–2178. [Google Scholar] [CrossRef]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yao, X.; Zhang, R.; Sun, L.; Zhang, Z.; Zhao, Y.; Zhang, T.; Yan, J.; Zhang, Y.; Wu, X.; et al. Recent advances in glass-ceramics: Performance and toughening mechanisms in restorative dentistry. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35334. [Google Scholar] [CrossRef]
- Teichmann, M.; Göckler, F.; Weber, V.; Yildirim, M.; Wolfart, S.; Edelhoff, D. Ten-year survival and complication rates of lithium-disilicate (Empress 2) tooth-supported crowns, implant-supported crowns, and fixed dental prostheses. J. Dent. 2017, 56, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Manziuc, M.; Kui, A.; Chisnoiu, A.; Labuneț, A.; Negucioiu, M.; Ispas, A.; Buduru, S. Zirconia-Reinforced Lithium Silicate Ceramic in Digital Dentistry: A Comprehensive Literature Review of Our Current Understanding. Medicina 2023, 59, 2135. [Google Scholar] [CrossRef]
- Zarone, F.; Ruggiero, G.; Leone, R.; Breschi, L.; Leuci, S.; Sorrentino, R. Zirconia-reinforced lithium silicate (ZLS) mechanical and biological properties: A literature review. J. Dent. 2021, 109, 103661. [Google Scholar] [CrossRef]
- Larson, T.D. The clinical significance of marginal fit. Northwest Dent. 2012, 91, 22–29. [Google Scholar] [PubMed]
- Rossetti, P.H.; do Valle, A.L.; de Carvalho, R.M.; De Goes, M.F.; Pegoraro, L.F. Correlation between margin fit and microleakage in complete crowns cemented with three luting agents. J. Appl. Oral Sci. 2008, 16, 64–69. [Google Scholar] [CrossRef]
- Zoellner, A.; Brägger, U.; Fellmann, V.; Gaengler, P. Correlation between clinical scoring of secondary caries at crown margins and histologically assessed extent of the lesions. Int. J. Prosthodont. 2000, 13, 453–459. [Google Scholar]
- Knoernschild, K.L.; Campbell, S.D. Periodontal tissue responses after insertion of artificial crowns and fixed partial dentures. J. Prosthet. Dent. 2000, 84, 492–498. [Google Scholar] [CrossRef]
- Srimaneepong, V.; Heboyan, A.; Zafar, M.S.; Khurshid, Z.; Marya, A.; Fernandes, G.V.O.; Rokaya, D. Fixed Prosthetic Restorations and Periodontal Health: A Narrative Review. J. Funct. Biomater. 2022, 13, 15. [Google Scholar] [CrossRef]
- Karataşli, O.; Kursoğlu, P.; Capa, N.; Kazazoğlu, E. Comparison of the marginal fit of different coping materials and designs produced by computer aided manufacturing systems. Dent. Mater. J. 2011, 30, 97–102. [Google Scholar] [CrossRef]
- Reich, S.; Gozdowski, S.; Trentzsch, L.; Frankenberger, R.; Lohbauer, U. Marginal fit of heat-pressed vs. CAD/CAM processed all-ceramic onlays using a milling unit prototype. Oper. Dent. 2008, 33, 644–650. [Google Scholar] [CrossRef]
- Tan, P.L.; Gratton, D.G.; Diaz-Arnold, A.M.; Holmes, D.C. An in vitro comparison of vertical marginal gaps of CAD/CAM titanium and conventional cast restorations. J. Prosthodont. 2008, 17, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Kale, E.; Cilli, M.; Özçelik, T.B.; Yilmaz, B. Marginal fit of CAD-CAM monolithic zirconia crowns fabricated by using cone beam computed tomography scans. J. Prosthet. Dent. 2020, 123, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Naert, I.; Van der Donck, A.; Beckers, L. Precision of fit and clinical evaluation of all-ceramic full restorations followed between 0.5 and 5 years. J. Oral Rehabil. 2005, 32, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.P.; Cuschieri, L.A.; Bianchi, D.M.; Pradíes, G.; Côrtes, A.R.G. Advantages and drawbacks of different methods to measure marginal gaps in fixed dental prostheses: A scoping review. J. Dent. 2024, 151, 105400. [Google Scholar] [CrossRef]
- Holst, S.; Karl, M.; Wichmann, M.; Matta, R.-E.T. A new triple-scan protocol for 3D fit assessment of dental restorations. Quintessence Int. 2011, 42, 651–657. [Google Scholar]
- Zhang, Y.; Lawn, B.R. Evaluating dental zirconia. Dent. Mater. 2019, 35, 15–23. [Google Scholar] [CrossRef]
- Fraga, S.; Amaral, M.; Bottino, M.A.; Valandro, L.F.; Kleverlaan, C.J.; May, L.G. Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics. Dent. Mater. 2017, 33, 1286–1297. [Google Scholar] [CrossRef]
- Romanyk, D.L.; Martinez, Y.T.; Veldhuis, S.; Rae, N.; Guo, Y.; Sirovica, S.; Fleming, G.J.P.; Addison, O. Strength-limiting damage in lithium silicate glass-ceramics associated with CAD-CAM. Dent. Mater. 2019, 35, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.B.; Quinn, G.D.; Kelly, J.R.; Scherrer, S.S. Fractographic analyses of three ceramic whole crown restoration failures. Dent. Mater. 2005, 21, 920–929. [Google Scholar] [CrossRef]
- Thompson, J.; Anusavice, K.; Naman, A.; Morris, H. Fracture surface characterization of clinically failed all-ceramic crowns. J. Dent. Res. 1994, 73, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.R.; Ziglioli, N.U.; Marocho, S.M.S.; Satterthwaite, J.; Borba, M. Effect of the CAD/CAM Milling Protocol on the Fracture Behavior of Zirconia Monolithic Crowns. Materials 2024, 17, 2981. [Google Scholar] [CrossRef]
- Pilecco, R.O.; Machry, R.V.; Baldi, A.; Tribst, J.P.M.; Sarkis-Onofre, R.; Valandro, L.F.; Kleverlaan, C.J.; Scotti, N.; Pereira, G.K.R. Influence of CAD-CAM milling strategies on the outcome of indirect restorations: A scoping review. J. Prosthet. Dent. 2024, 131, 811.e1–811.e10. [Google Scholar] [CrossRef] [PubMed]
- Lubauer, J.; Belli, R.; Schünemann, F.H.; Matta, R.E.; Wichmann, M.; Wartzack, S.; Völkl, H.; Petschelt, A.; Lohbauer, U. Inner marginal strength of CAD/CAM materials is not affected by machining protocol. Biomater. Investig. Dent. 2021, 8, 119–128. [Google Scholar] [CrossRef]
- Oh, H.-S.; Lim, Y.-J.; Kim, B.; Kim, M.-J.; Kwon, H.-B.; Baek, Y.-W. Influence of Scanning-Aid Materials on the Accuracy and Time Efficiency of Intraoral Scanners for Full-Arch Digital Scanning: An In Vitro Study. Materials 2021, 14, 2340. [Google Scholar] [CrossRef]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef]
- Elsayed, S.M.; Emam, Z.N.; Abu-Nawareg, M.; Zidan, A.Z.; Elsisi, H.A.; Abuelroos, E.M.; Fansa, H.A.; Shokier, H.M.R.; Elbanna, K.A. Marginal gap distance and cyclic fatigue loading for different all-ceramic endocrowns. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 879–887. [Google Scholar] [CrossRef]
- Matta, R.E.; Schmitt, J.; Wichmann, M.; Holst, S. Circumferential fit assessment of CAD/CAM single crowns--a pilot investigation on a new virtual analytical protocol. Quintessence Int. 2012, 43, 801–809. [Google Scholar]
- Rizonaki, M.; Jacquet, W.; Bottenberg, P.; Depla, L.; Boone, M.; De Coster, P.J. Evaluation of marginal and internal fit of lithium disilicate CAD-CAM crowns with different finish lines by using a micro-CT technique. J. Prosthet. Dent. 2022, 127, 890–898. [Google Scholar] [CrossRef]
- Zimmermann, M.; Valcanaia, A.; Neiva, G.; Mehl, A.; Fasbinder, D. Influence of Different CAM Strategies on the Fit of Partial Crown Restorations: A Digital Three-dimensional Evaluation. Oper. Dent. 2018, 43, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Abduo, J.; Elseyoufi, M. Accuracy of Intraoral Scanners: A Systematic Review of Influencing Factors. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Nawafleh, N.A.; Mack, F.; Evans, J.; Mackay, J.; Hatamleh, M.M. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: A literature review. J. Prosthodont. 2013, 22, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef]
- Marchesi, G.; Camurri Piloni, A.; Nicolin, V.; Turco, G.; Di Lenarda, R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology 2021, 10, 1170. [Google Scholar] [CrossRef]
- Berger, L.; Matta, R.E.; Weiß, C.M.; Adler, W.; Wichmann, M.; Zorzin, J.I. Effect of Luting Materials on the Accuracy of Fit of Zirconia Copings: A Non-Destructive Digital Analysis Method. Materials 2024, 17, 2130. [Google Scholar] [CrossRef]
- Kim, H.; Hong, S.J.; Choi, Y.; Lee, Y.; Won, H.; Kim, H.S.; Pae, A. Assessment of the fit of lithium disilicate crowns at various locations fabricated by three different methods using the triple-scan protocol. Int. J. Comput. Dent. 2023, 26, 37–47. [Google Scholar] [CrossRef]
- Zimmermann, M.; Valcanaia, A.; Neiva, G.; Mehl, A.; Fasbinder, D. Three-Dimensional Digital Evaluation of the Fit of Endocrowns Fabricated from Different CAD/CAM Materials. J. Prosthodont. 2019, 28, e504–e509. [Google Scholar] [CrossRef]
- Anadioti, E.; Aquilino, S.A.; Gratton, D.G.; Holloway, J.A.; Denry, I.; Thomas, G.W.; Qian, F. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J. Prosthodont. 2014, 23, 610–617. [Google Scholar] [CrossRef]
- Kang, S.Y.; Yu, J.M.; Lee, J.S.; Park, K.S.; Lee, S.Y. Evaluation of the Milling Accuracy of Zirconia-Reinforced Lithium Silicate Crowns Fabricated Using the Dental Medical Device System: A Three-Dimensional Analysis. Materials 2020, 13, 4680. [Google Scholar] [CrossRef] [PubMed]
- Saloum, A.; Abdullah, M. Marginal Gap and Internal Fit of CEREC e.Max and Celtra Duo Crowns; University of British Columbia: Vancouver, Canada, 2019. [Google Scholar]
- Schaefer, O.; Decker, M.; Wittstock, F.; Kuepper, H.; Guentsch, A. Impact of digital impression techniques on the adaption of ceramic partial crowns in vitro. J. Dent. 2014, 42, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Neves, F.D.; Prado, C.J.; Prudente, M.S.; Carneiro, T.A.; Zancopé, K.; Davi, L.R.; Mendonça, G.; Cooper, L.F.; Soares, C.J. Micro-computed tomography evaluation of marginal fit of lithium disilicate crowns fabricated by using chairside CAD/CAM systems or the heat-pressing technique. J. Prosthet. Dent. 2014, 112, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, N.Z.; Ruse, N.D.; Ford, N.L.; Carvalho, R.M.; Wyatt, C.C.L. Marginal Fit of Lithium Disilicate Crowns Fabricated Using Conventional and Digital Methodology: A Three-Dimensional Analysis. J. Prosthodont. 2018, 27, 145–152. [Google Scholar] [CrossRef]
- Prudente, M.S.; Davi, L.R.; Nabbout, K.O.; Prado, C.J.; Pereira, L.M.; Zancopé, K.; Neves, F.D. Influence of scanner, powder application, and adjustments on CAD-CAM crown misfit. J. Prosthet. Dent. 2018, 119, 377–383. [Google Scholar] [CrossRef]
Parameter | Default Value |
---|---|
Spacer (radial) | 120 μm |
Spacer (occlusal) | 120 μm |
Proximal Contact Strength | 25 μm |
Occlusal Contact Strength | 25 μm |
Dynamic Contact Strength | 25 μm |
Margin Ramp Angle | 60° |
Minimal Thickness (radial) | 1000 μm |
Minimal Thickness (occlusal) | 1500 μm |
Margin Thickness | 50 μm |
Material | Milling Strategy | Mean Manufacturing Time | Group |
---|---|---|---|
IPS e.max CAD | fast | 8 min | A |
extrafine | 22 min | B | |
Celtra Duo | fine | 14 min | C |
extrafine | 22 min | D |
Group | Mean [μm] | SD [μm] | Min [μm] | Max [μm] |
---|---|---|---|---|
A | 63 | 11.2 | 50 | 91 |
B | 66 | 14.2 | 38 | 83 |
C | 55 | 3.3 | 48 | 59 |
D | 82 | 10.6 | 65 | 96 |
Variable | Group 1 | Group 2 | p Value |
---|---|---|---|
Milling strategy | A | B | 0.374 |
C | D | 0.005 | |
Material | B | D | 0.015 |
Group | Axis | Mean [μm] | SD [μm] | Min [μm] | Max [μm] |
---|---|---|---|---|---|
A | xyz | 146 | 24.8 | 117 | 204 |
z | 105 | 27.9 | 78 | 163 | |
n | 67 | 16 | 44 | 95 | |
B | xyz | 87 | 26 | 65 | 143 |
z | 19 | 36.5 | −76 | 44 | |
n | 43 | 15 | 24 | 67 | |
C | xyz | 118 | 12.8 | 88 | 134 |
z | 86 | 10.8 | 72 | 100 | |
n | 59 | 12 | 34 | 78 | |
D | xyz | 111 | 21.9 | 86 | 147 |
z | 54 | 22 | 5 | 81 | |
n | 54 | 8 | 36 | 63 |
Axis | Variable | Group 1 | Group 2 | p Value |
---|---|---|---|---|
xyz | Milling strategy | A | B | 0.008 |
C | D | 0.26 | ||
Material | B | D | 0.022 | |
z | Milling strategy | A | B | 0.007 |
C | D | 0.005 | ||
Material | B | D | 0.005 | |
n | Milling strategy | A | B | 0.022 |
C | D | 0.332 | ||
Material | B | D | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, L.; Förtsch, F.; Kretschmer, R.R.; Sednyev, O.; Zorzin, J.I.; Wichmann, M.; Matta, R.E. Influence of the Milling Strategy on the Marginal Fit of Chairside-Fabricated Lithium Disilicate Crowns. Materials 2025, 18, 2184. https://doi.org/10.3390/ma18102184
Berger L, Förtsch F, Kretschmer RR, Sednyev O, Zorzin JI, Wichmann M, Matta RE. Influence of the Milling Strategy on the Marginal Fit of Chairside-Fabricated Lithium Disilicate Crowns. Materials. 2025; 18(10):2184. https://doi.org/10.3390/ma18102184
Chicago/Turabian StyleBerger, Lara, Felix Förtsch, Ralf Robert Kretschmer, Oleksandr Sednyev, José Ignacio Zorzin, Manfred Wichmann, and Ragai Edward Matta. 2025. "Influence of the Milling Strategy on the Marginal Fit of Chairside-Fabricated Lithium Disilicate Crowns" Materials 18, no. 10: 2184. https://doi.org/10.3390/ma18102184
APA StyleBerger, L., Förtsch, F., Kretschmer, R. R., Sednyev, O., Zorzin, J. I., Wichmann, M., & Matta, R. E. (2025). Influence of the Milling Strategy on the Marginal Fit of Chairside-Fabricated Lithium Disilicate Crowns. Materials, 18(10), 2184. https://doi.org/10.3390/ma18102184