Lu3Al5O12:Ce3+ Fluorescent Ceramic with Deep Traps: Thermoluminescence and Photostimulable Luminescence Properties
Abstract
:1. Introduction
2. Experiments
3. Results and Analysis
3.1. Structure and Optical Properties
3.2. Analysis of Trap and Optical Storage Principle
3.3. Performance of ODS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, M.; Li, X.; Cao, Y. Optical storage arrays: A perspective for future big data storage. Light Sci. Appl. 2014, 3, 11. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 2016, 1, 14. [Google Scholar] [CrossRef]
- Zhao, M.; Wen, J.; Hu, Q.; Wei, X.; Zhong, Y.; Ruan, H.; Gu, M. A 3D nanoscale optical disk memory with petabit capacity. Nature 2024, 626, 22. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.W.; Qiu, C.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 8. [Google Scholar] [CrossRef]
- Cumpston, B.H.; Ananthavel, S.P.; Barlow, S.; Dyer, D.L.; Ehrlich, J.E.; Erskine, L.L.; Heikal, A.A.; Kuebler, S.M.; Lee, I.Y.S.; McCord-Maughon, D.; et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999, 398, 51–54. [Google Scholar] [CrossRef]
- Kawata, S.; Kawata, Y. Three-dimensional optical data storage using photochromic materials. Chem. Rev. 2000, 100, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Parthenopoulos, D.A.; Rentzepis, P.M. Three-dimensional optical storage memory. Science 1989, 245, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Lindmayer, J. A new erasable optical memory. Solid State Technol. 1988, 31, 135–138. [Google Scholar]
- Zhuang, Y.; Chen, D.; Chen, W.; Zhang, W.; Su, X.; Deng, R.; An, Z.; Chen, H.; Xie, R. X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light Sci. Appl. 2021, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hua, Y.; Ye, R.; Cai, M.; Xu, S.; Zhang, J. SrAl2O4 crystallite embedded inorganic medium with super-long persistent luminescence, thermoluminescence, and photostimulable luminescence for smart optical information storage. Photonics Res. 2022, 10, 381–388. [Google Scholar] [CrossRef]
- Lin, S.; Lin, H.; Ma, C.; Cheng, Y.; Ye, S.; Lin, F.; Li, R.; Xu, J.; Wang, Y. High-security-level multi-dimensional optical storage medium: Nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence. Light Sci. Appl. 2020, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Ueda, J.; Kuroishi, K.; Tanabe, S. Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light. Appl. Phys. Lett. 2014, 104, 4. [Google Scholar] [CrossRef]
- Bian, H.; Qin, X.; Wu, Y.; Yi, Z.; Liu, S.; Wang, Y.; Brites, C.D.S.; Carlos, L.D.; Liu, X. Multimodal Tuning of Synaptic Plasticity Using Persistent Luminescent Memitters. Adv. Mater. 2022, 34, 7. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Liang, Y.; Zhang, Y.; Chen, D.; Shan, X.; Wang, X.-J. Deep-trap ultraviolet persistent phosphor for advanced optical storage application in bright environments. Light Sci. Appl. 2024, 13, 253. [Google Scholar] [CrossRef] [PubMed]
- Jutamulia, S.; Storti, G.M.; Lindmayer, J.; Seiderman, W. Use of electron trapping materials in optical signal processing. 1: Parallel Boolean logic. Appl. Opt. 1990, 29, 4806–4811. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Newman, D.; Viney, I.V.F. Study on relationship of luminescence in CaS:Eu,Sm and dopants concentration. J. Lumin. 2002, 99, 237–245. [Google Scholar] [CrossRef]
- Pashaie, R.; Farhat, N.H. Optical realization of bioinspired spiking neurons in the electron trapping material thin film. Appl. Opt. 2007, 46, 8411–8418. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Z.; Du, H. Effect of trivalent rare earth ions doping on the fluorescence properties of electron trapping materials SrS:Eu2+. J. Rare Earths 2011, 29, 101–104. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wang, L.; Lv, Y.; Zhou, T.; Xie, R. Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep-Trap Persistent Luminescence Materials. Adv. Funct. Mater. 2018, 28, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, D.; Zhuang, Y.; Chen, W.; Long, H.; Chen, H.; Xie, R. NaMgF3:Tb3+@NaMgF3 Nanoparticles Containing Deep Traps for Optical Information Storage. Adv. Opt. Mater. 2021, 9, 8. [Google Scholar] [CrossRef]
- Deng, M.; Liu, Q.; Zhang, Y.; Wang, C.; Guo, X.; Zhou, Z.; Xu, X. Novel Co-Doped Y2GeO5:Pr3+,Tb3+: Deep Trap Level Formation and Analog Binary Optical Storage with Submicron Information Points. Adv. Opt. Mater. 2021, 9, 10. [Google Scholar] [CrossRef]
- Lin, S.; Lin, H.; Huang, Q.; Cheng, Y.; Xu, J.; Wang, J.; Xiang, X.; Wang, C.; Zhang, L.; Wang, Y. A Photostimulated BaSi2O5:Eu2+,Nd3+ Phosphor-in-Glass for Erasable-Rewritable Optical Storage Medium. Laser Photonics Rev. 2019, 13, 11. [Google Scholar] [CrossRef]
- Fu, J.; Feng, S.; Genevois, C.; Veron, E.; Yang, Y.; Wang, H.; Ma, Z.; Bai, L.; Xu, W.; Fan, R.; et al. Green-emissive Ce3+:Lu3Al5O12-Al2O3 nanoceramics elaborated via glass crystallization for high-power laser lighting applications. J. Mater. Chem. C 2024, 12, 7188–7196. [Google Scholar] [CrossRef]
- Hao, W.; Wang, X.-J.; Guo, J.; Liu, J.; Li, S.; Xu, X. Fabrication of LuAG:Ce-Al2O3 eutectics via laser-heated pedestal growth technique for high-power laser-driven lighting. J. Am. Ceram. Soc. 2024, 107, 8291–8298. [Google Scholar] [CrossRef]
- Ling, J.; Zhang, Y.; Zhang, H.; Xu, W.; Zhou, Y.; Hong, M. Ultrathin green-emitting LuAG:Ce-Al2O3 composite fine-grained ceramics for high-brightness chip-scale packaging LEDs. J. Eur. Ceram. Soc. 2025, 45, 116948. [Google Scholar] [CrossRef]
- Zhu, D.; Cai, J.; Beitlerova, A.; Kucerkova, R.; Hu, C.; Zhou, Z.; Chewpraditkul, W.; Nikl, M.; Li, J. Stoichiometric modulation and scintillation property characterization of Ce,Ca:LuAG ceramics. J. Am. Ceram. Soc. 2024, 107, 6844–6852. [Google Scholar] [CrossRef]
- Ding, H.; Liu, Z.; Hu, P.; Liu, Y.; Sun, P.; Luo, Z.; Chen, X.; Jiang, H.; Jiang, J. High Efficiency Green-Emitting LuAG:Ce Ceramic Phosphors for Laser Diode Lighting. Adv. Opt. Mater. 2021, 9, 2002141. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, D.; Xie, R. Persistent Luminescent Materials with Deep Traps for Optical Information Storage. Laser Optoelectron. Prog. 2021, 58, 1516001-1. [Google Scholar] [CrossRef]
- Li, W.; Zhuang, Y.; Zheng, P.; Zhou, T.-L.; Xu, J.; Ueda, J.; Tanabe, S.; Wang, L.; Xie, R.-J. Tailoring Trap Depth and Emission Wavelength in Y3Al5-x,GaxO12:Ce3+,V3+ Phosphor-in-Glass Films for Optical Information Storage. ACS Appl. Mater. Interfaces 2018, 10, 27150–27159. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Deng, M.; Wang, M.; Liu, X.; Zhou, Z.; Wang, J.; Liu, Q. Bismuth-Activated Persistent Phosphors. Adv. Opt. Mater. 2023, 11, 2201827. [Google Scholar] [CrossRef]
- Tang, Y.; Deng, M.; Zhou, Z.; Xu, X.; Wang, J.; Liu, Q. Bi-activated MgGa2O4 phosphors with rich defect energy levels: Spectral property and optical storage applications. Ceram. Int. 2022, 48, 19141–19149. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, Y.; Zhao, C.; Xu, L.; Wang, X.; Xu, Y.; Lin, S.; Liang, X.; Liu, J.; Xiang, W. Ultrahigh Power Density LuAG:Ce Green Converters For High-Luminance Laser-Driven Solid State Lighting. Laser Photonics Rev. 2023, 17, 2200909. [Google Scholar] [CrossRef]
- Bos, A.J.J.; Dorenbos, P.; Bessière, A.; Lecointre, A.; Bedu, M.; Bettinelli, M.; Piccinelli, F. Study of TL glow curves of YPO4 double doped with lanthanide ions. Radiat. Meas. 2011, 46, 1410–1416. [Google Scholar] [CrossRef]
- Bos, A.J.J. High sensitivity thermoluminescence dosimetry. Nucl. Instrum. Meth. B 2001, 184, 3–28. [Google Scholar] [CrossRef]
- Yuan, L.; Jin, Y.; Su, Y.; Wu, H.; Hu, Y.; Yang, S. Optically Stimulated Luminescence Phosphors: Principles, Applications, and Prospects. Laser Photonics Rev. 2020, 14, 34. [Google Scholar] [CrossRef]
- Hu, Z.; Guan, J.; Zheng, S.; Chai, Z.; Wu, S.; Liu, D.; Su, J.; Shi, F.; Duan, C.; Wang, Y.; et al. Burn After Read: A Rewritable Multiplexing Optical Information Storage and Encryption Method. Laser Photonics Rev. 2024, 18, 2301024. [Google Scholar] [CrossRef]
- Lai, X.; Fang, Z.; Zhang, J.; Wang, B.; Zhu, W.; Zhang, R. Structure and luminescence properties of Ce3+-activated BaLu2Al2Ga2SiO12 persistent phosphors for optical information storage. Opt. Mater. 2021, 120, 7. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Hu, Y.; Cai, C.; Li, Y.; Zhang, X.; Liang, B.; Yang, Y.; Qiu, J. Mechanism of the trivalent lanthanides’ persistent luminescence in wide bandgap materials. Light Sci. Appl. 2022, 11, 8. [Google Scholar] [CrossRef]
- Gallo, S.; Veronese, I.; Vedda, A.; Fasoli, M. Evidence of Optically Stimulated Luminescence in Lu3Al5O12:Ce. Phys. Status Solidi A 2019, 216, 1900103. [Google Scholar] [CrossRef]
- Trojan-Piegza, J.; Niittykoski, J.; Holsa, J.; Zych, E. Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+, Ca2+-codoped LU2O3 materials. Chem. Mater. 2008, 20, 2252–2261. [Google Scholar] [CrossRef]
- Wang, C.; Deng, M.; Zhang, Y.; Liu, Q.; Zhou, Z.; Xu, X.; He, H. Multicomponent garnet phosphor (LuYGd)(Al4Ga)O12:Ce3+,V3+: Trap modulation via reductive gas annealing and an optical information storage property. Opt. Mater. Express 2021, 11, 2256–2267. [Google Scholar] [CrossRef]
- Hu, C.; Liu, S.; Shi, Y.; Kou, H.; Li, J.; Pan, Y.; Feng, X.; Liu, Q. Antisite defects in nonstoichiometric Lu3Al5O12:Ce ceramic scintillators. Phys. Status Solidi B 2015, 252, 1993–1999. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, L.; Selim, F.A.; Sun, R.; Wong, C.; Chen, H.; Zhang, Q. Annealing induced discoloration of transparent YAG ceramics using divalent additives in solid-state reaction sintering. J. Eur. Ceram. Soc. 2017, 37, 4123–4128. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Z.; Dai, J.; Chen, H.; Shi, Y.; Kou, H.; Wang, T.; Vedda, A.; Beitlerova, A.; Kucerkova, R.; et al. The influence of air annealing on the microstructure and scintillation properties of Ce,Mg:LuAG ceramics. J. Am. Ceram. Soc. 2019, 102, 1805–1813. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, M.; Hu, Q.; Jiang, R.; Ruan, H.; Lin, H. Lu3Al5O12:Ce3+ Fluorescent Ceramic with Deep Traps: Thermoluminescence and Photostimulable Luminescence Properties. Materials 2025, 18, 63. https://doi.org/10.3390/ma18010063
Zhang J, Zhao M, Hu Q, Jiang R, Ruan H, Lin H. Lu3Al5O12:Ce3+ Fluorescent Ceramic with Deep Traps: Thermoluminescence and Photostimulable Luminescence Properties. Materials. 2025; 18(1):63. https://doi.org/10.3390/ma18010063
Chicago/Turabian StyleZhang, Junwei, Miao Zhao, Qiao Hu, Renjie Jiang, Hao Ruan, and Hui Lin. 2025. "Lu3Al5O12:Ce3+ Fluorescent Ceramic with Deep Traps: Thermoluminescence and Photostimulable Luminescence Properties" Materials 18, no. 1: 63. https://doi.org/10.3390/ma18010063
APA StyleZhang, J., Zhao, M., Hu, Q., Jiang, R., Ruan, H., & Lin, H. (2025). Lu3Al5O12:Ce3+ Fluorescent Ceramic with Deep Traps: Thermoluminescence and Photostimulable Luminescence Properties. Materials, 18(1), 63. https://doi.org/10.3390/ma18010063