Tensile and Bending Strength of Birch and Beech Lamellas Finger Jointed with Conventional and Newly Developed Finger-Joint Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of the Lamella Properties and Group Formation
2.2. Production of the Finger-Joint Profiles
2.2.1. Conventional Finger-Joint Profile
2.2.2. Newly Developed Finger-Joint Profiles
2.3. Determination of the Tensile and Bending Strength
- ft,0 = Tensile strength parallel to the grain [N mm−2];
- Fmax = Maximum load [N];
- A = Cross-sectional area [mm2].
- fm = Bending strength [N mm−2];
- E0,fj = Global bending modulus of elasticity of finger-jointed specimens [N mm−2];
- F = Load [N];
- a = Distance between a load point and the next support in bending test [mm];
- b = Width of the specimen in bending test or smaller cross-sectional dimension [mm];
- h = Height of the specimen at bending test or the larger cross-sectional dimension [mm];
- l = Span in bending test [mm];
- w2 − w1 = Deformation increase corresponding to F2 − F1, [mm];
- F2 − F1 = Load increase in the linear range of the load–deformation curve [N];
- G = Shear modulus [N mm−2].
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knauf, M.; Frühwald, A. Marktpotenziale von Laubholzprodukten aus technisch-wirtschaftlicher und marktstruktureller Sicht. Fachagentur Nachwachsende Rohst. e. V. (FNR) 2020, 224, 44. [Google Scholar]
- Torno, S. Konstruktive Bauprodukte Aus Europäischen Laubhölzern; Informationsverein Holz e.V.: Düsseldorf, Germany, 2017; p. 60. [Google Scholar]
- Wehrmann, W.; Torno, S. Laubholz für tragende Konstruktionen-Zusammenstellung zum Stand von Forschung und Entwicklung; Cluster—Initiative Forst und Holz in Bayern gGmbH: Freising, Germany, 2015; p. 18. [Google Scholar]
- Jeitler, G.; Augustin, M. Ist Birke die bessere Buche? Mechanische Eigenschaften und Referenzprojekte aus Birke; 22. Internationales Holzbau-Forum IHF: Garmisch-Partenkirchen, Germany, 2016; p. 16. [Google Scholar]
- Obernostererer, D.; Jeitler, G.; Schickhofer, G. Birke: Holzart Der Zukunft Im Modernen Holzbau; University of Stuttgart: Stuttgart, Germany, 2022; p. 8. [Google Scholar]
- Ivansson, B.; Ström, H. Das Keilzinken von Holz—Zweite Mitteilung: Grundlegende Untersuchungen zu einem neuen Verfahren der Keilzinkung. Holz Als Roh-Und Werkst. 1968, 26, 77–84. [Google Scholar] [CrossRef]
- Aicher, S.; Radovic, B. Untersuchungen Zum Einfluss Der Keilzinkengeometrie Auf Die Zugfestigkeit Keilgezinkter Brettschichtholz-Lamellen. Holz Als Roh-Und Werkst. 1999, 57, 1–11. [Google Scholar] [CrossRef]
- Rajcan, J.; Kozelouh, B. Beitrag Zum Entwerfen Geklebter Keilzinkenverbindungen. Holztechnologie 1963, 4, 222–228. [Google Scholar]
- Röver, D. Entwicklung neuartiger Knotenverstärkungen von Holztragwerken mit Kunstharzpressholz (KP); Technische Universität Kaiserslautern: Kaiserslautern, Germany, 2020. [Google Scholar]
- Aicher, S. European Hardwoods for the Building Sector (EU Hardwoods) Subproject 1; ERA-WoodWisdom; University of Stuttgart—Materials Testing Institute: Stuttgart, Germany, 2018; p. 117. [Google Scholar]
- EN 15497:2014-07; Structural Finger Jointed Solid Timber—Performance Requirements and Minimum Production Requirements. Beuth Verlag GmbH: Berlin, Germany, 2014; p. 58.
- Schusser, A. Untersuchung Der Keilzinkenverbindung Für Brettlamellen in Laubholz; Berner Fachhochschule: Biel, Switzerland, 2013. [Google Scholar]
- EN 14080:2013-09; Timber Structures—Glued Laminated Timber and Glued Solid Timber—Requirements. Beuth Verlag GmbH: Berlin, Germany, 2013; p. 110.
- He, S.; Lin, L.; Wu, Z.; Chen, Z. Application of Finite Element Analysis in Properties Test of Finger-Jointed Lumber. J. Bioresour. Bioprod. 2020, 5, 124–133. [Google Scholar] [CrossRef]
- Bustos, C.; Hernández, R.; Beauregard, R.; Mohammad, M. Influence of Machining Parameters on the Structural Performance of Finger-Joined Black Spruce. Wood Fiber Sci. 2007, 36, 359–367. [Google Scholar]
- Bustos, C.; Hernández, R.E.; Beauregard, R.; Mohammad, M. Effects of End-Pressure on the Finger-Joint Quality of Black Spruce Lumber: A Microscopic Analysis. Maderas Cienc. Tecnol. 2011, 13, 319–328. [Google Scholar] [CrossRef]
- Smardzewski, J. Distribution of Stresses in Finger Joints. Wood Sci. Technol. 1996, 30, 477–489. [Google Scholar] [CrossRef]
- Hernandez, R.; Flach, D.D. Finger-Joint in Finger-Jointed Lumber 10, United States Patent Application Publication; Quarles and Brady LLP: Milwaukee, WI, USA, 2002; p. 10. [Google Scholar]
- Timbolmas, C.; Rescalvo, F.J.; Portela, M.; Bravo, R. Analysis of Poplar Timber Finger Joints by Means of Digital Image Correlation (DIC) and Finite Element Simulation Subjected to Tension Loading. Eur. J. Wood Prod. 2022, 80, 555–567. [Google Scholar] [CrossRef]
- Hernandez, R. Analysis of Strain in Finger-Jointed Lumber; Swiss Federal Institution of Technology: Montreux, Switzerland, 1998; pp. 145–152. [Google Scholar]
- Konnerth, J.; Valla, A.; Gindl, W.; Müller, U. Measurement of Strain Distribution in Timber Finger Joints. Wood Sci. Technol. 2006, 40, 631–636. [Google Scholar] [CrossRef]
- Fortuna, B.; Azinović, B.; Plos, M.; Šuligoj, T.; Turk, G. Tension Strength Capacity of Finger Joined Beech Lamellas. Eur. J. Wood Prod. 2020, 78, 985–994. [Google Scholar] [CrossRef]
- Scheibenreiter, J.; Entacher, K.; Neumüller, A. Vergleichende Untersuchungen Zwischen Industriell Eingesetzten Und Einem Neu Entwickelten Keilzinkenprofil. Holztechnologie 2006, 47, 7. [Google Scholar]
- Tran, V.-D.; Oudjene, M.; Méausoone, P.-J. FE Analysis and Geometrical Optimization of Timber Beech Finger-Joint under Bending Test. Int. J. Adhes. Adhes. 2014, 52, 40–47. [Google Scholar] [CrossRef]
- Habipi, B.; Ajdinaj, D. Wood Finger-Joint Strength as Function of Finger Length and Slope Positioning of Tips. Int. J. Eng. Appl. Sci. 2015, 2, 128–132. [Google Scholar]
- Franke, B.; Schusser, A.; Müller, A. Analysis of Finger Joints from Beech Wood; Bern University of Applied Sciences: Quebec City, QC, Canada, 2014. [Google Scholar]
- EN 14081-1:2019-10; Timber Structures—Strength Graded Structural Timber with Rectangular Cross Section—Part 1: General Requirements. Beuth Verlag GmbH: Berlin, Germany, 2019; p. 43.
- DIN 52182:1976-09; Testing of Wood; Determination of Density. Beuth Verlag GmbH: Berlin, Germany, 1976; p. 3.
- EN 13183-1:2002-07; Moisture Content of a Piece of Sawn Timber—Part 1: Determination by Oven Dry Method. Beuth Verlag GmbH: Berlin, Germany, 2022; p. 5.
- EN 408:2012-10; Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. Beuth Verlag GmbH: Berlin, Germany, 2012; p. 39.
- Serrano, E.; Enquist, B. Contact-Free Measurement and Non-Linear Finite Element Analyses of Strain Distribution along Wood Adhesive Bonds. Holzforschung 2005, 59, 641–646. [Google Scholar] [CrossRef]
- Campilho, R.D.S.G. Strength Prediction of Adhesively-Bonded Joints; a Science Publishers Book; CRC Press, Taylor & Francis Group: Abingdon, UK, 2017; ISBN 978-1-4987-2246-9. [Google Scholar]
- Chauhan, S.; Sethy, A. Differences in Dynamic Modulus of Elasticity Determined by Three Vibration Methods and Their Relationship with Static Modulus of Elasticity. Maderas Cienc. Tecnol. 2016, 18, 373–382. [Google Scholar] [CrossRef]
- Crawford, D.; Hairstrans, R.; Alexander, J.; Bongers, F. Assessment of Structural Performance of Accoya Wood for GluLam Fabrication. In Proceedings of the Conference: World Conference on Timber Engineering 2012, Auckland, New Zealand, 15–19 July 2012; p. 6. [Google Scholar]
- Stolze, H.; Gurnik, M.; Kegel, S.; Bollmus, S.; Militz, H. Determination of the Bonding Strength of Finger Joints Using a New Test Specimen Geometry. Processes 2023, 11, 445. [Google Scholar] [CrossRef]
- Kläusler, O.; Clauß, S.; Lübke, L.; Trachsel, J.; Niemz, P. Influence of Moisture on Stress–Strain Behaviour of Adhesives Used for Structural Bonding of Wood. Int. J. Adhes. Adhes. 2013, 44, 57–65. [Google Scholar] [CrossRef]
- Gindl, W.; Sretenovic, A.; Vincenti, A.; Müller, U. Direct Measurement of Strain Distribution along a Wood Bond Line. Part 2: Effects of Adhesive Penetration on Strain Distribution. Holzforschung 2005, 59, 307–310. [Google Scholar] [CrossRef]
- Konnerth, J.; Gindl, W.; Müller, U. Elastic Properties of Adhesive Polymers. I. Polymer Films by Means of Electronic Speckle Pattern Interferometry. J. Appl. Polym. Sci. 2007, 103, 3936–3939. [Google Scholar] [CrossRef]
- Stoeckel, F.; Konnerth, J.; Gindl-Altmutter, W. Mechanical Properties of Adhesives for Bonding Wood—A Review. Int. J. Adhes. Adhes. 2013, 45, 32–41. [Google Scholar] [CrossRef]
- Morin-Bernard, A.; Blanchet, P.; Dagenais, C.; Achim, A. Glued-Laminated Timber from Northern Hardwoods: Effect of Finger-Joint Profile on Lamellae Tensile Strength. Constr. Build. Mater. 2021, 271, 121591. [Google Scholar] [CrossRef]
- Aicher, S.; Höfflin, L.; Behrens, W. A Study on Tension Strength of Finger Joints in Beech Wood Laminations. Otto-Graf-Journal 2001, 12, 169–186. [Google Scholar]
Adhesives | Density [g cm−3] | Viscosity [mPa s] | Mixing Ratio (R:H) | Application Quantity 1 [g m−2] | ||
---|---|---|---|---|---|---|
Resin | Hardener | Resin | Hardener | |||
PUR | 1.16 | 24,000 | 1-comp., no primer | 160 | ||
MUF | 1.27 | 1.08 | 3000–10,000 | 1800–2800 | 100:20 | 350 |
PRF | 1.16 | 1.18 | 5000–10,000 | 5000–8000 | 100:20 | 350 |
Part 1, birch lamellas (2000 × 150 × 35 mm3), tensile test | ||||
Standard, lj = 16.05 mm (vertical) | ||||
Newinitial, lj = 16.05 mm (vertical) and 8.5 mm (horizontal) | ||||
Series | Adhesive | Quantity [g m−2] | Profile | Number of Specimens |
Control | - | - | Unjointed | 16 |
PURS160 | PUR | 160 | Standard | 16 |
PURNi320 | PUR | 320 | Newintial | 16 |
MUFS350 | MUF | 350 | Standard | 16 |
MUFNi700 | MUF | 700 | Newintitial | 16 |
PRFS350 | PRF | 350 | Standard | 14 |
PRFNi700 | PRF | 700 | Newintial | 16 |
Part 2, birch specimens (655 × 31 × 31 mm3), bending test | ||||
Standard, lj = 16.05 mm (vertical) | ||||
Newinitial, lj = 16.05 mm (vertical) and 8.5 mm (horizontal) | ||||
Series | Adhesive | Quantity [g m−2] | Profile | Number of Specimens |
Control | - | - | Unjointed | 30 |
MUFS350 | MUF | 350 | Standard | 35 |
MUFNi350 | MUF | 350 | Newinitial | 32 |
MUFNi700 | MUF | 700 | Newintiial | 32 |
Part 3, beech lamellas (2000 × 100 × 25 mm3), tensile test | ||||
Standard, lj = 16.05 mm (vertical) | ||||
Newmodified, lj = 16.05 mm (vertical) and 4 mm (horizontal) | ||||
Series | Adhesive | Quantity [g m−2] | Profile | Number of Specimens |
Control | - | - | Unjointed | 10 |
MUFS350 | MUF | 350 | Standard | 15 |
MUFNm350 | MUF | 350 | Newmodified | 15 |
All Specimens | With Failure in Finger Joint | |||||||
---|---|---|---|---|---|---|---|---|
Series | N | MC [%] | ρ [g cm−3] | E0 [N mm−2] | E0,fj [N mm−2] | N | ft,0 [N mm−2] | R2 ft,0; E0 |
Control | 16 | 9.1 (±0.6) | 0.62 (±0.06) | 14,550 (±1785) | - | 16 | 79.9 (±15.1) | 0.56 |
PURS160 | 16 | 9.1 (±0.4) | 0.61 (±0.05) | 14,550 (±1758) | 15,061 (±1840) | 16 | 61.2 (±6.6) | 0.06 |
PURNi320 | 16 | 9.1 (±0.5) | 0.61 (±0.04) | 14,550 (±1658) | 15,114 (±1705) | 15 | 52.8 (±7.3) | 0.16 |
MUFS350 | 16 | 9.2 (±0.5) | 0.61 (±0.05) | 14,549 (±1648) | 15,112 (±1752) | 12 | 57.0 (±5.5) | 0.18 |
MUFNi700 | 16 | 9.1 (±0.5) | 0.63 (±0.04) | 14,550 (±1667) | 15,079 (±1774) | 14 | 67.2 (±14.7) | 0.72 |
PRFS350 | 14 | 9.0 (±1.3) | 0.61 (±0.06) | 14,236 (±1334) | - | 13 | 36.8 (±7.3) | 0.01 |
PRFNi700 | 16 | 8.9 (±1.1) | 0.59 (±0.03) | 14,368 (±1554) | - | 15 | 44.0 (±9.0) | 0.30 |
Series | N | MC [%] | ρ [g cm−3] | E0,fj [N mm−2] | fm [N mm−2] | R2 fm; p |
---|---|---|---|---|---|---|
Control | 30 | 7.3 (±0.18) | 0.63 (±0.06) | 10,006 (±1535) | 107.5 (±14.2) | 0.10 |
MUFS350 | 35 | 7.3 (±0.18) | 0.62 (±0.05) | 9524 (±1204) | 60.4 (±6.8) | 0.06 |
MUFNi350 | 32 | 7.5 (±0.22) | 0.61 (±0.04) | 9845 (±1210) | 69.9 (±8.5) | 0.17 |
MUFNi700 | 32 | 7.1 (±0.20) | 0.61 (±0.05) | 10,070 (±1267) | 82.0 (±9.0) | 0.21 |
All Specimens | With Failure in Finger Joint | ||||||
---|---|---|---|---|---|---|---|
Series | N | MC [%] | ρ [g cm−3] | E0 [N mm−2] | N | ft,0 [N mm−2] | R2 ft,0; E0 |
Control | 10 | 11.7 (±0.45) | 0.69 (±0.02) | 13,188 (±1436) | 9 | 98.1 (±16.5) | 0.42 |
MUFS350 | 15 | 11.9 (±0.27) | 0.69 (±0.01) | 13,267 (±614) | 11 | 63.1 (±3.6) | 0.01 |
MUFNm350 | 15 | 11.9 (±0.29) | 0.69 (±0.02) | 13,326 (±547) | 10 | 70.5 (±7.9) | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolze, H.; Militz, H. Tensile and Bending Strength of Birch and Beech Lamellas Finger Jointed with Conventional and Newly Developed Finger-Joint Profiles. Materials 2024, 17, 5063. https://doi.org/10.3390/ma17205063
Stolze H, Militz H. Tensile and Bending Strength of Birch and Beech Lamellas Finger Jointed with Conventional and Newly Developed Finger-Joint Profiles. Materials. 2024; 17(20):5063. https://doi.org/10.3390/ma17205063
Chicago/Turabian StyleStolze, Hannes, and Holger Militz. 2024. "Tensile and Bending Strength of Birch and Beech Lamellas Finger Jointed with Conventional and Newly Developed Finger-Joint Profiles" Materials 17, no. 20: 5063. https://doi.org/10.3390/ma17205063
APA StyleStolze, H., & Militz, H. (2024). Tensile and Bending Strength of Birch and Beech Lamellas Finger Jointed with Conventional and Newly Developed Finger-Joint Profiles. Materials, 17(20), 5063. https://doi.org/10.3390/ma17205063