Challenges and Future Recommendations for Lightning Strike Damage Assessments of Composites: Laboratory Testing and Predictive Modeling
Abstract
:1. Introduction
2. Laboratory Lightning Strike Tests
3. In Situ and Post-Strike Characterization and Imaging
4. Material Characterization and Modeling
5. Lighting Electric Arc Plasma Modeling
5.1. Lightning Electric Arc Plasma–Magnetohydrodynamic Model
- (1)
- Difficulty in obtaining material properties for the electric arc. These properties include mass density, net emission coefficient, electrical and thermal transport properties, and viscosity, which are all temperature dependent. Although these properties have been predicted using theoretical methods (e.g., thermodynamic), predictions are not quite consistent among different research groups. More importantly, experimental data are severely lacking, especially for transport properties at high temperatures beyond 15,000 K (the plasma temperature can go above 20,000 K) [48,49] as well as the net emission coefficient of the plasma in air [115] due to the difficulty in experimental instrumentation. Future research is needed to develop instrumentation techniques to enable the measurement of these properties that are critical to the accuracy of the MHD plasma model.
- (2)
- Numerical convergence and computational cost. Most MHD models for welding electric arcs use a constant electric current. However, for lightning strikes, especially for electric current waveforms A, B, and D, the electric current quickly rises to kiloamperes within only a few tens or hundreds of microseconds. This poses significant challenges to the numerical convergence as the corresponding material properties experience dramatic changes within a short duration, which makes the problem highly nonlinear. The time increment needs to be sufficiently small to capture the changes in the plasma temperature, velocity, and other observables as the lightning current drastically increases. The mesh size also needs to be sufficiently small to accommodate the extremely short time increment to avoid mesh-dependent solutions. It has been reported that the run time for a complete waveform B MHD simulation using COMSOL Multiphysics (i.e., a general-purpose commercial finite element software) takes about 70 days even with parallel computing using high-performance computing [47]. To solve this issue, the same researchers have adopted a scaling approach based on the similitude theory and successfully reduced the run time to less than 10 days. Although the run time has been significantly reduced, it is still computationally cost-prohibitive for many practical engineering applications. Due to the issues with numerical convergence, many studies have focused only on a single or a few of the four lightning current waveform components, such as modeling waveform C (i.e., constant current) only [10,112,113,114], waveforms B [44,45,47], or waveforms A and C [42,116]. To the authors’ knowledge, the plasma model for four complete lightning waveforms is not available to date. Therefore, there is a need in the future to develop a plasma model for all four lightning waveform components and examine how the predictions are different from those predicted using only one or a few waveforms. Moreover, novel numerical algorithms need to be developed in the future to speed up the computation. One potential solution is to create cost-effective surrogate models using machine learning methods.
- (3)
- Difficulty in representing a true lightning strike discharge in the air. The current MHD models for lightning strike electric arc are mostly created based on laboratory lightning strike test setups. The arc gap between the cathode and anode is limited to only a few millimeters. As discussed previously, the arc gap has a significant impact on the lightning strike loading conditions as well as the arc radius and its expansion. In the field, a lightning strike arc has a length of about 4 km, and the radius can reach 1 m [117]. However, increasing the arc gap in the MHD model will significantly increase the difficulty in achieving numerical convergence and will greatly increase the computational cost. The convergence will start to become extremely difficult when the arc gap increases to 20 cm [47,51]. Although the first author and third author modeled a 4 km long electric arc in their prior works [118,119], the models solved only the electric field and ignored the magnetic field and the flow field. In addition, the actual environment, such as the humidity, environment temperature, dust, wind, and operation conditions (e.g., the flight speed of an aircraft and speed of a blade for a wind turbine) can all have influences on the characteristics of the electric arc plasma produced in the air. Therefore, future research is recommended to improve the fidelity of the plasma model to understand the various factors that are affecting the lightning strike electric arc characteristics and the effect on the composite structures.
5.2. Lightning Plasma–Composite Damage Coupled Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamiyama, S.; Hirano, Y.; Okada, T.; Sonehara, T.; Ogasawara, T. I–V characteristics and temperature response of unidirectional CFRP exposed to simulated lightning current in the fiber direction. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107111. [Google Scholar] [CrossRef]
- Kawakami, H.; Feraboli, P. Lightning strike damage resistance and tolerance of scarfrepaired mesh-protected carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1247–1262. [Google Scholar] [CrossRef]
- May, M.; Schopferer, S. On the Relationship between Lightning Strike Parameters and Measured Free Surface Velocities in Artificial Lightning Strike Tests on Composite Panels. J. Compos. Sci. 2023, 7, 268. [Google Scholar] [CrossRef]
- Sasikumar, A.; Costa, J.; Trias, D.; Gonzalez, E.V.; Garica-Rodriguez, S.M.; Maimi, P. Unsymmetrical stacking sequences as a novel approach to tailor damage resistance under out-of-plane impact loading. Compos. Sci. Technol. 2019, 173, 125–135. [Google Scholar] [CrossRef]
- Wan, G.; Dong, Q.; Li, T.; Sun, X.; Jia, Y. Simulated Analysis of Lightning-induced Mechanical Damages in Fiber Reinforced Composites Based on a Pyrolysis-affected Damage Constitutive Model. Appl. Compos. Mater. 2022, 29, 2165–2184. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Li, S.; Tian, X.; Yao, X.; Wang, B.; Zhu, Y.; Chen, J. Experimental study of the damage behaviour of laminated CFRP composites subjected to impulse lightning current. Compos. Part B 2022, 239, 109949. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.; Wei, Z.; Wu, Y.; Huang, C. Lightning damage of composite material driven by multi-physics coupling. Compos. Sci. Tech. 2023, 233, 109886. [Google Scholar] [CrossRef]
- Millen, S.L.; Xu, X.; Lee, J.; Mukhopadhyay, S.; Wisnom, M.R.; Murphy, A. Towards a virtual test framework to predict residual compressive strength after lightning strikes. Compos. Part A Appl. Sci. Manuf. 2023, 174, 107712. [Google Scholar] [CrossRef]
- Millen, S.; Lee, J. Microscale modelling of lightning damage in fibre-reinforced composites. J. Compos. Mater. 2023, 57, 1769–1789. [Google Scholar] [CrossRef]
- Lin, W.; Wang, Y.; Aider, Y.; Rostaghi-Chalaki, M.; Yousefpour, K.; Kluss, J.; Wallace, D.; Liu, Y.; Hu, W. Analysis of damage modes of glass fiber composites subjected to simulated lightning strike impulse voltage puncture and direct high voltage AC puncture. J. Compos. Mater. 2020, 54, 4067–4080. [Google Scholar] [CrossRef]
- ARP5412B; Aerospace Recommended Practice. SAE Aerospace: Warrendale, PA, USA, 1999.
- Yousefpour, K.; Lin, W.; Wang, Y.; Park, C. Discharge and ground electrode design considerations for the lightning strike damage tolerance assessment of CFRP matrix composite laminates. Compos. Part B Eng. 2020, 198, 108226. [Google Scholar] [CrossRef]
- Environmental Tests, National Institute of Aviation Research, Wichita State University. Available online: https://www.wichita.edu/industry_and_defense/NIAR/Laboratories/environmental.php (accessed on 19 December 2023).
- High Voltage Laboratory, Mississippi State University. Available online: https://www.ece.msstate.edu/high-voltage-lab/ (accessed on 19 December 2023).
- Szatkowski, G.N.; Dudley, K.L.; Koppen, S.V.; Ely, J.J.; Nguyen, T.X.; Ticatch, L.A.; Mielnik, J.J.; Mcneill, P.A. Common practice lightning strike portection characterization technique to quantify damage mechanisms on composite substrates. In Proceedings of the International Conference on Lightning and Static Electricity (ICOLSE), Seattle, WA, USA, 18–20 September 2013; NF1676L-15995. pp. 13–51. [Google Scholar]
- Hirano, Y.; Katsumata, S.; Iwahori, Y.; Todoroki, A. Artificial lightning testing on graphite/epoxy composite laminate. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1461–1470. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, W.; Wang, Y.; Liu, Z.; Cheng, J.; Tan, J. Design optimization of composite wind turbine blades considering tortuous lightning strike and non-proportional multi-axial fatigue damage. Eng. Optimiz. 2020, 52, 1868–1886. [Google Scholar] [CrossRef]
- Wen, X.; Qu, L.; Wang, Y.; Chen, X.; Lan, L.; Si, T.; Xu, J. Effect of wind turbine blade rotation on triggering lightning: An experimental study. Energies 2016, 9, 1029. [Google Scholar] [CrossRef]
- Ogasawara, T.; Hirano, Y.; Yoshimura, A. Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Compos. Part A Appl. Sci. Manuf. 2010, 41, 973–981. [Google Scholar] [CrossRef]
- Wang, F.S.; Ding, N.; Liu, Z.Q.; Ji, Y.Y.; Yue, Z.F. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike. Compos. Struct. 2014, 117, 222–233. [Google Scholar] [CrossRef]
- Abdelal, G.; Murphy, A. Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties. Compos. Struct. 2014, 109, 268–278. [Google Scholar] [CrossRef]
- Muñoz, R.; Delgado, S.; González, C.; López-Romano, B.; Wang, D.-Y.; Llorca, J. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials. Appl. Compos. Mater. 2014, 21, 149–164. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Yue, Z.F.; Wang, F.S.; Ji, Y.Y. Combining Analysis of Coupled Electrical-Thermal and BLOW-OFF Impulse Effects on Composite laminate Induced by Lightning Strike. Appl. Compos. Mater. 2015, 22, 189–207. [Google Scholar] [CrossRef]
- Kumar, V.; Yokozeki, T.; Karch, C.; Hassen, A.A.; Hershey, C.J.; Kim, S.; Lindahl, J.M.; Barnes, A.; Bandari, Y.K.; Kunc, V. Factors affecting direct lightning strike damage to fiber reinforced composites: A review. Compos. Part B Eng. 2020, 183, 107688. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Lu, L.; Huang, X. Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Compos. Part A Appl. Sci. Manuf. 2015, 79, 164–175. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Huang, L.; Wang, K.; Huang, X. Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Mater. Des. 2016, 99, 477–489. [Google Scholar] [CrossRef]
- Feraboli, P.; Miller, M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Compos. Part A Appl. Sci. Manuf. 2009, 40, 954–967. [Google Scholar] [CrossRef]
- Chen, J.; Bi, X.; Liu, J.; Fu, Z. Damage investigation of carbon-fiber-reinforced plastic laminates with fasteners subjected to lightning current components C and D. Appl. Sci. 2020, 10, 2147. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.; Wang, Q.; Dong, Q.; Yi, X.; Jia, Y. Eliminating lightning strike damage to carbon fiber composite structures in Zone 2 of aircraft by Ni-coated carbon fiber nonwoven veils. Compos. Sci. Technol. 2019, 169, 95–102. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.; Zhang, L.; Wei, X.; Dong, Q.; Yi, X.; Jia, Y. Implementation of fiberglass in carbon fiber composites as an isolation layer that enhances lightning strike protection. Compos. Sci. Technol. 2019, 174, 117–124. [Google Scholar] [CrossRef]
- Sun, J.; Yao, X.; Xu, W.; Chen, J.; Wu, Y. Evaluation method for lightning damage of carbon fiber reinforced polymers subjected to multiple lightning strikes with different combinations of current components. J. Compos. Mater. 2020, 54, 111–125. [Google Scholar] [CrossRef]
- Hong, T.P.; Lesaint, O.; Gonon, P. Water absorption in a glass-mica-epoxy composite—[I: Influence on Electrical Properties]. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1–10. [Google Scholar] [CrossRef]
- Morgan, B.; Madhukar, M.; Walsh, J.; Hooker, B.; Grandlienard, S. Moisture degradation of cyanate ester/S2 glass composite insulation systems. J. Compos. Mater. 2010, 44, 821–837. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.; Cai, L.; Fan, Y.; Zhou, M.; Li, Q. Characteristics of Acoustic Response from Simulated Impulsive Lightning Current Discharge. High Volt. 2019, 4, 221–227. [Google Scholar] [CrossRef]
- Jia, S.; Wang, F.; Huang, W.; Xu, B. Research on the Blow-Off Impulse Effect of a Composite Reinforced Panel Subjected to Lightning Strike. Appl. Sci. 2019, 9, 1168. [Google Scholar] [CrossRef]
- Foster, P.; Abdelal, G.; Murphy, A. Understanding how arc attachment behaviour influences the prediction of composite specimen thermal loading during an artificial lightning strike test. Compos. Struct. 2018, 192, 671–683. [Google Scholar] [CrossRef]
- Dong, Q.; Wan, G.; Ping, L.; Guo, Y.; Yi, X.; Jia, Y. Coupled thermal-mechanical damage model of laminated carbon fiber/resin composite subjected to lightning strike. Compos. Struct. 2018, 206, 185–193. [Google Scholar] [CrossRef]
- Dong, Q.; Guo, Y.; Sun, X.; Jia, Y. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike. Polymer 2015, 56, 385–394. [Google Scholar] [CrossRef]
- Wang, Y.; Zhupanska, O.I. Modeling of thermal response and ablation in laminated glass fiber reinforced polymer matrix composites due to lightning strike. Appl. Math. Model. 2018, 53, 118–131. [Google Scholar] [CrossRef]
- Wang, Y.; Zhupanska, O.I. Thermal ablation in fiber-reinforced composite laminates subjected to continuing lightning current. In Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, CA, USA, 4–8 January 2016; p. 0986. [Google Scholar] [CrossRef]
- Wang, Y.; Zhupanska, O.I. Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades. Compos. Struct. 2015, 132, 1182–1191. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.S.; Ma, X.T.; Yue, Z.F. The coupling mechanism and damage prediction of carbon fiber/epoxy composites exposed to lightning current. Compos. Struct. 2018, 203, 436–445. [Google Scholar] [CrossRef]
- Ma, X.; Wang, F.; Chen, H.; Wang, D.; Xu, B. Thermal damage analysis of aircraft composite laminate suffered from lightning swept stroke and arc propagation. Chin. J. Aeronaut. 2020, 33, 1242–1251. [Google Scholar] [CrossRef]
- Millen, S.L.J.; Murphy, A.; Abdelal, G.; Catalanotti, G. Sequential finite element modelling of lightning arc plasma and composite specimen thermal-electric damage. Comput. Struct. 2019, 222, 48–62. [Google Scholar] [CrossRef]
- Millen, S.L.J.; Murphy, A.; Abdelal, G.; Catalanotti, G. Specimen representation on the prediction of artificial test lightning plasma, resulting specimen loading and subsequent composite material damage. Compos. Struct. 2020, 231, 111545. [Google Scholar] [CrossRef]
- Chemartin, L.; Lalande, P.; Delalondre, C.; Cheron, B.; Lago, F. Modelling and simulation of unsteady dc electric arcs and their interactions with electrodes. J. Phys. D Appl. Phys. 2011, 44, 194003. [Google Scholar] [CrossRef]
- Abdelal, G.F.; Murphy, A. A multiphysics simulation approach for efficient modeling of lightning strike tests on aircraft structures. IEEE Trans. Plasma Sci. 2017, 45, 725–735. [Google Scholar] [CrossRef]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Capitelli, M.; Colonna, G.; Gorse, C.; D’Angola, A. Transport properties of high temperature air in local thermodynamic equilibrium. Eur. Phys. J. D 2000, 11, 279–289. [Google Scholar] [CrossRef]
- Kamiyama, S.; Hirano, Y.; Okada, T.; Ogasawara, T. Lightning strike damage behavior of carbon fiber reinforced epoxy, bismaleimide, and polyetheretherketone composites. Compos. Sci. Technol. 2018, 161, 107–114. [Google Scholar] [CrossRef]
- Aider, Y.; Wang, Y.; Abdelal, G.; Zhupanska, O.I. Modeling of the Electric Arc Plasma Dis-charge Produced by a Lightning Strike Continuing Current. In Proceedings of the International Conference on Lightning and Static Electricity (ICOLSE 2019), Wichita, KS, USA, 10–13 September 2019. [Google Scholar]
- Liu, Y.; Xiao, C.; Shen, S.; Wang, Y.; Williams, E. Indirect electrode or direct electrode? A revisitation of electrode configuration in simulated lightning damage testing. Electr. Power Syst. Res. 2023, 217, 109101. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Fu, Z. A comparative analysis of carbon fiber–reinforced polymers subjected to lightning damage tests with conical electrodes and jet diverting electrodes. J. Test Eval. 2021, 49, 3899–3913. [Google Scholar] [CrossRef]
- Sonehara, T.; Kusano, H.; Tokuoka, N.; Hirano, Y. Visualization of lightning impulse current discharge on CFRP laminate. In Proceedings of the 2014 International Conference on Lightning Protection (ICLP), Shanghai, China, 11–18 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 835–839. [Google Scholar] [CrossRef]
- Millen, S.L.J.; Murphy, A. Understanding the influence of test specimen boundary conditions on material failure resulting from artificial lightning strike. Eng. Fail. Anal. 2020, 114, 104577. [Google Scholar] [CrossRef]
- Wang, Y. Multiphysics analysis of lightning strike damage in laminated carbon/glass fiber reinforced polymer matrix composite materials: A review of problem formulation and computational modeling. Compos. Part A Appl. Sci. Manuf. 2017, 101, 543–553. [Google Scholar] [CrossRef]
- Foster, P.; Abdelal, G.; Murphy, A. Modelling of mechanical failure due to constrained thermal expansion at the lightning arc attachment point in carbon fibre epoxy composite material. Eng. Fail. Anal. 2018, 94, 364–378. [Google Scholar] [CrossRef]
- Fu, K.; Ye, L. Modelling of lightning-induced dynamic response and mechanical damage in CFRP composite laminates with protection. Compos. Struct. 2019, 218, 162–173. [Google Scholar] [CrossRef]
- Lee, J.; Lacy Jr, T.E.; Pittman, C.U., Jr. Coupled thermal electrical and mechanical lightning damage predictions to carbon/epoxy composites during arc channel shape expansion. Compos. Struct. 2021, 255, 112912. [Google Scholar] [CrossRef]
- Foster, P.; Abdelal, G.; Murphy, A. Quantifying the Influence of Lightning Strike Pressure Loading on Composite Specimen Damage. Appl. Compos. Mater. 2019, 26, 115–137. [Google Scholar] [CrossRef]
- Karch, C.; Arteiro, A.; Camanho, P.P. Modelling mechanical lightning loads in carbon fibre-reinforced polymers. Int. J. Solids Struct. 2019, 162, 217–243. [Google Scholar] [CrossRef]
- Dong, Q.; Guo, Y.; Chen, J.; Yao, X.; Yi, X.; Ping, L.; Jia, Y. Influencing factor analysis based on electrical–thermal-pyrolytic simulation of carbon fiber composites lightning damage. Compos. Struct. 2016, 140, 1–10. [Google Scholar] [CrossRef]
- Guo, Y.; Dong, Q.; Chen, J.; Yao, X.; Yi, X.; Jia, Y. Comparison between temperature and pyrolysis dependent models to evaluate the lightning strike damage of carbon fiber composite laminates. Compos. Part A Appl. Sci. Manuf. 2017, 97, 10–18. [Google Scholar] [CrossRef]
- Chemartin, L.; Lalande, P.; Peyrou, B.; Chazottes, A.; Elias, P.Q.; Delalondre, C. Direct effects of lightning on aircraft structure: Analysis of the thermal, electrical and mechanical constraints. Aerosp. Lab 2012, 5, 1–15. [Google Scholar]
- Soysal, A.; Ozkol, I.; Uzal, E. An Analytical-Based Lightning-Induced Damage Model for an Aircraft Wing Exposed to Pressure Loading of Lightning. Math. Probl. Eng. 2024, 2024, 8313135. [Google Scholar] [CrossRef]
- Wang, F.S.; Yu, X.S.; Jia, S.Q.; Li, P. Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike. Aerosp. Sci. Technol. 2018, 75, 304–314. [Google Scholar] [CrossRef]
- Dhanya, T.M.; Yerramalli, C.S. Post lightning strike residual compressive strength prediction in unidirectional carbon reinforced polymer composites. Sādhanā 2024, 49, 31. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.; Wang, Q.; Dong, Q.; Yi, X.; Jia, Y. Enhanced lightning strike protection of carbon fiber composites using expanded foils with anisotropic electrical conductivity. Compos. Part A Appl. Sci. Manuf. 2019, 117, 211–218. [Google Scholar] [CrossRef]
- Gou, J.; Tang, Y.; Liang, F.; Zhao, Z.; Firsich, D.; Fielding, J. Carbon nanofiber paper for lightning strike protection of composite materials. Compos. Part B Eng. 2010, 41, 192–198. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Cheng, X.; Hei, Y.; Xing, L.; Li, Z. Lightning strike damage on the composite laminates with carbon nanotube films: Protection effect and damage mechanism. Compos. Part B Eng. 2019, 168, 342–352. [Google Scholar] [CrossRef]
- Wang, B.; Duan, Y.; Xin, Z.; Yao, X.; Abliz, D.; Ziegmann, G. Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin film infusion method. Compos. Sci. Technol. 2018, 158, 51–60. [Google Scholar] [CrossRef]
- Moupfouma, F. Aircraft Structure Paint Thickness and Lightning Swept Stroke Damages. SAE Int. J. Aerosp. 2013, 6, 392–398. [Google Scholar] [CrossRef]
- Langot, J.; Gourcerol, E.; Serbescu, A.; Brassard, D.; Chizari, K.; Lapalme, M.; Desautels, A.; Sirois, F.; Therriault, D. Performance of painted and non-painted non-woven nickel-coated carbon fibers for lightning strike protection of composite aircraft. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107772. [Google Scholar] [CrossRef]
- Kumar, V.; Lin, W.; Wang, Y.; Spencer, R.; Saha, S.; Park, C.; Yeole, P.; Hmeidat, N.S.; Herring, C.; Rencheck, M.L.; et al. Enhanced through-thickness electrical conductivity and lightning strike damage response of interleaved vertically aligned short carbon fiber composites. Compos. Part B Eng. 2023, 253, 110535. [Google Scholar] [CrossRef]
- Lin, W.; Wang, Y.; Yousefpour, K.; Park, C.; Kumar, V. Evaluating the Lightning Strike Damage Tolerance for CFRP Composite Laminates Containing Conductive Nanofillers. Appl. Compos. Mater. 2022, 29, 1537–1554. [Google Scholar] [CrossRef]
- Lin, W.; Jony, B.; Yousefpour, K.; Wang, Y.; Park, C.; Roy, S. Effects of Graphene Nanoplatelets on the Lightning Strike Damage Response of Carbon Fiber Epoxy Composite Laminates. In Proceedings of the American Society for Composites 35th Technical Conference, Online, 14–17 September 2020. [Google Scholar] [CrossRef]
- Lampkin, S.; Lin, W.; Rostaghi-Chalaki, M.; Yousefpour, K.; Wang, Y.; Kluss, J. Epoxy Resin with Carbon Nanotube Additives for Lightning Strike Damage Mitigation of Carbon Fiber Composite Laminates. In Proceedings of the American Society for Composites (ASC) 34th Annual Technical Conference, Atlanta, GA, USA, 23–25 September 2019. [Google Scholar] [CrossRef]
- Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Bilewicz, M. Synthesis and characterization of the electrically conductive polymeric composite for lightning strike protection of aircraft structures. Compos. Struct. 2017, 159, 773–783. [Google Scholar] [CrossRef]
- Dydek, K.; Boczkowska, A.; Kozera, R.; Durałek, P.; Sarniak, Ł.; Wilk, M.; Łogin, W. Effect of SWCNT-tuball paper on the lightning strike protection of CFRPs and their selected mechanical properties. Materials 2021, 14, 3140. [Google Scholar] [CrossRef]
- De Juan, S.; Gordo, E.; Jiménez-Morales, A.; Sirois, F. Response of electroless copper coated CFRP laminates to emulated lightning strikes. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106184. [Google Scholar] [CrossRef]
- Rajesh PS, M.; Sirois, F.; Therriault, D. Damage response of composites coated with conducting materials subjected to emulated lightning strikes. Mater. Des. 2018, 139, 45–55. [Google Scholar] [CrossRef]
- Lombetti, D.M.; Skordos, A.A. Lightning strike and delamination performance of metal tufted carbon composites. Compos. Struct. 2019, 209, 694–699. [Google Scholar] [CrossRef]
- Saenz, E.; del Rio, M.; Venegas, P. Effect of carbon fiber and thermoplastic resin on laminates under lightning and dielectric strength tests. Polym. Compos. 2023, 44, 6839–6855. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, D.; Yan, G.; Wang, Z. Experimental and Numerical Study on Residual Strength of Honeycomb Sandwich Composite Structure after Lightning Strike. Aerospace 2022, 9, 158. [Google Scholar] [CrossRef]
- Lee, J.; Gharghabi, P.; Boushab, D.; Ricks, T.M.; Lacy, T.E., Jr.; Pittman, C.U., Jr.; Mazzola, M.S.; Velicki, A. Artificial lightning strike tests on PRSEUS panels. Compos. Part B Eng. 2018, 154, 467–477. [Google Scholar] [CrossRef]
- Lin, W.; Wang, Y.; Lampkin, S.; Prasad, S.; Zhupanska, O.; Davidson, B. Bond Strength Degradation of Adhesive-Bonded CFRP Composite Lap Joints after Lightning Strike. In Proceedings of the 36th Annual American Society for Composites Technical Conference, ASC 2021, Tucson, AZ, USA, 21–24 September 2021. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Q.; Ma, Y.; Ren, H.; Fang, Z.; Chen, C.; Siew, W.H. Experimental study on lightning attachment manner to wind turbine blades with lightning protection system. IEEE Trans. Plasma Sci. 2018, 47, 635–646. [Google Scholar] [CrossRef]
- Harrell, T.M.; Thomsen, O.T.; Dulieu-Barton, J.M.; Madsen, S.F. Damage in CFRP composites subjected to simulated lighting strikes-Assessment of thermal and mechanical responses. Compos. Part B Eng. 2019, 176, 107298. [Google Scholar] [CrossRef]
- Laudani, A.A.M.; Vryonis, O.; Lewin, P.L.; Golosnoy, I.O.; Kremer, J.; Klein, H.; Thomsen, O.T. Numerical simulation of lightning strike damage to wind turbine blades and validation against conducted current test data. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106708. [Google Scholar] [CrossRef]
- Schleicher ASK 21 Two Seat Glider, Air Accidents Investigation Branch (AAIB) Bulletin No: 12/99 Ref: EW/C99/04/02 Category: 3.0. Available online: https://assets.publishing.service.gov.uk/media/542300e540f0b613420009cf/dft_avsafety_pdf_500699.pdf (accessed on 19 December 2023).
- Kumar, V.; Yokozeki, T.; Okada, T.; Hirano, Y.; Goto, T.; Takahashi, T.; Hassen, A.A.; Ogasawara, T. Polyaniline-based all-polymeric adhesive layer: An effective lightning strike protection technology for high residual mechanical strength of CFRPs. Compos. Sci. Technol. 2019, 172, 49–57. [Google Scholar] [CrossRef]
- Hirano, Y.; Sonehara, T.N.T.; Tokuoka, N. An experimental study on influence of shock-wave on composite lightning damage. In Proceedings of the 2019 International Conference on Lightning an d Static Electricity (ICOLSE), Wichita, KA, USA, 10–13 September 2019. [Google Scholar]
- Xu, X.; Millen, S.L.; Lee, J.; Abdelal, G.; Mitchard, D.; Wisnom, M.R.; Murphy, A. Developing Test Methods for Compression after Lightning Strikes. Appl. Compos. Mater. 2023, 30, 539–556. [Google Scholar] [CrossRef]
- Kumar, V.; Yeole, P.S.; Hiremath, N.; Spencer, R.; Billah, K.M.M.; Vaidya, U.; Hasanian, M.; Theodore, M.; Kim, S.; Hassen, A.A.; et al. Internal arcing and lightning strike damage in short carbon fiber reinforced thermoplastic composites. Compos. Sci. Technol. 2021, 201, 108525. [Google Scholar] [CrossRef]
- Kawakami, H. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2011. [Google Scholar]
- Sauder, C.; Lamon, J.; Pailler, R. Thermomechanical Properties of Carbon Fibres at High Temperatures (Up to 2000 °C). Compos. Sci. Technol. 2002, 62, 499–504. [Google Scholar] [CrossRef]
- Chern, B.-C.; Moon, T.J.; Howell, J.R. Measurement of the temperature and cure dependence of the thermal conductivity of epoxy resin. Exp. Heat Transf. 1993, 6, 157–174. [Google Scholar] [CrossRef]
- Farmer, J.D.; Covert, E.E. Thermal Conductivity of a Thermosetting Advanced Composite during Its Cure. J. Thermophys. Heat Tr. 1996, 10, 467–475. [Google Scholar] [CrossRef]
- Chern, B.C.; Moon, T.J.; Howell, J.R.; Tan, W. New experimental data for enthalpy of reaction and temperature-and degree-of-cure-dependent specific heat and thermal conductivity of the Hercules 3501-6 epoxy system. J. Compos. Mater. 2002, 36, 2061–2072. [Google Scholar] [CrossRef]
- Konduri, T.G.; Zhupanska, O.I. Micromechanics modeling of polymer matrix composites undergoing pyrolysis. In Proceedings of the American Society for Composites Thirty-Fifth Technical Conference, Virtual, 14–17 September 2020. [Google Scholar]
- Negarestani, R.; Li, L.; Sezer, H.K.; Whitehead, D.; Methven, J. Nano-second pulsed DPSS Nd: YAG laser cutting of CFRP composites with mixed reactive and inert gases. Int. J. Adv. Manuf. Technol. 2010, 49, 553–566. [Google Scholar] [CrossRef]
- David, C. Comprehensive Chemical Kinetics; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Augl, J. Moisture Effects on Mechanical Properties of 3501-6 Resin; NSWC/TR-79-41; Naval Surface Weapons Center, Silver Spring: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Pandini, S.; Pegoretti, A. Time, temperature, and strain effects on viscoelastic Poisson’s ratio of epoxy resins. Polym. Eng. Sci. 2008, 48, 1434–1441. [Google Scholar] [CrossRef]
- Verdu, J.; Tcharkhtchi, A. Elastic properties of thermosets in glassy state. Die Angew. Makromol. Chem. Appl. Macromol. Chem. Phys. 1996, 240, 31–38. [Google Scholar] [CrossRef]
- Tcharkhtchi, A.; Faivre, S.; Roy, L.E.; Trotignon, J.P.; Verdu, J. Mechanical properties of thermosets: Part I Tensile properties of an anhydride cured epoxy. J. Mater. Sci. 1996, 31, 2687–2692. [Google Scholar] [CrossRef]
- Konduri, T.; Zhupanska, O. Overall Temperature-Dependent Elastic Properties of Carbon Fiber Polymer Matrix Composites at High Temperatures. In Proceedings of the ASME International Mechanical Engineering Conference and Exposition, Virtual, 16–19 November 2020. [Google Scholar]
- Liu, Y.; Wang, Y. Is indirect electrode a good choice for simulated lightning damage tests?—The effect of metal vapor. IEEE T. Plasma Sci. 2021, 49, 1661–1668. [Google Scholar] [CrossRef]
- Millen, S.L.J.; Murphy, A. Modelling and analysis of simulated lightning strike tests: A review. Compos. Struct. 2021, 274, 114347. [Google Scholar] [CrossRef]
- Lago, F.; Gonzalez, J.J.; Freton, P.; Uhlig, F.; Lucius, N.; Piau, G.P. A numerical modelling of an electric arc and its interaction with the anode: Part III. Application to the interaction of a lightning strike and an aircraft in flight. J. Phys. D Appl. Phys. 2006, 39, 2294. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y. Modeling the lightning continuing current electric arc discharge and material thermal damage: Effects of combinations of amplitude and duration. Int. J. Therm. Sci. 2021, 162, 106786. [Google Scholar] [CrossRef]
- Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A.B.; Lowke, J.J. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. J. Phys. D Appl. Phys. 2010, 43, 434009. [Google Scholar] [CrossRef]
- Lago, F.; Gonzalez, J.J.; Freton, P.; Gleizes, A. A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. J. Phys. D Appl. Phys. 2004, 37, 883. [Google Scholar] [CrossRef]
- Menart, J.; Malik, S. Net emission coefficients for argon-iron thermal plasmas. J. Phys. D Appl. Phys. 2002, 35, 867. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.; Chen, H.; Zhang, Y. Evolution simulation of lightning discharge based on a magnetohydrodynamics method. Plasma Sci. Technol. 2018, 20, 075301. [Google Scholar] [CrossRef]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Wang, Y.; Hu, W. Investigation of the effects of receptors on the lightning strike protection of wind turbine blades. IEEE Trans. Electromagn. Compat. 2017, 59, 1180–1187. [Google Scholar] [CrossRef]
- Wang, Y.; Zhupanska, O.I. Estimation of the electric fields and dielectric breakdown in non-conductive wind turbine blades subjected to a lightning stepped leader. Wind Energy 2017, 20, 927–942. [Google Scholar] [CrossRef]
- Griffis, C.A.; Nemes, J.A.; Stonesifer, F.R.; Chang, C.I. Degradation in strength of laminated composites subjected to intense heating and mechanical loading. J. Compos. Mater. 1986, 20, 216–235. [Google Scholar] [CrossRef]
- Fanucci, J.P. Thermal response of radiantly heated kevlar and graphite/epoxy composites. J. Compos. Mater. 1987, 21, 129–139. [Google Scholar] [CrossRef]
- Wan, G.; Dong, Q.; Zhi, J.; Guo, Y.; Yi, X.; Jia, Y. Analysis on electrical and thermal conduction of carbon fiber composites under lightning based on electrical-thermal-chemical coupling and arc heating models. Compos. Struct. 2019, 229, 111486. [Google Scholar] [CrossRef]
- Naghipour, P.; Pineda, E.J.; Arnold, S.M. Simulation of lightning-induced delamination in un-protected CFRP laminates. Appl. Compos. Mater. 2016, 23, 523–535. [Google Scholar] [CrossRef]
- Kamiyama, S.; Hirano, Y.; Ogasawara, T. Delamination analysis of CFRP laminates exposed to lightning strike considering cooling process. Compos. Struct. 2018, 196, 55–62. [Google Scholar] [CrossRef]
- Millen, S.L.J.; Murphy, A.; Catalanotti, G.; Abdelal, G. Coupled thermal-mechanical progressive damage model with strain and heating rate effects for lightning strike damage assessment. Appl. Compos. Mater. 2019, 26, 1437–1459. [Google Scholar] [CrossRef]
- Chahar, R.S.; Lee, J.; Mukhopadhyay, T. On quantifying uncertainty in lightning strike damage of composite laminates: A hybrid stochastic framework of coupled transient thermal-electrical simulations. Aerosp. Sci. Technol. 2023, 142, 108597. [Google Scholar] [CrossRef]
- Hongkarnjanakul, N.; Bouvet, C.; Rivallant, S. Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure. Compos. Struct. 2013, 106, 549–559. [Google Scholar] [CrossRef]
- Kamiyama, S.; Okada, T.; Hirano, Y.; Sonehara, T.; Miyaki, H.; Ogasawara, T. Clarifying the mechanisms of edge glow generation in CFRP laminates exposed to simulated lightning currents. Compos. Part A Appl. Sci. Manuf. 2024, 177, 107932. [Google Scholar] [CrossRef]
- Bigand, A.; Espinosa, C.; Bauchire, J.M. Equivalent mechanical load model methodology to simulate lightning strike impact on protected and painted composite structure. Compos. Struct. 2022, 280, 114886. [Google Scholar] [CrossRef]
Actual Lightning Strike | Laboratory Electric Arc | |
---|---|---|
Peak current | 200 kA (±10%) | 200 kA (±10%) |
Peak power | ~1011 W/m | ~1011 W/m |
Action integral | 2 × 106 A2·s (±20%) | 2 × 106 A2·s (±20%) |
Discharge mechanism | Breakdown of the air | Breakdown of the air |
Arc length | 4000 m | 3~10 mm |
Arc radius | 1 m | A few centimeters |
Peak voltage | In the order of tens of kilovolts | 10~120 million volts |
Acoustic shock wave | ~400 Pa | 2 Pa (recorded with microphones at 1.8 m in a 5 kA experiment) [34] |
Models | Electrical Conductivity (S/mm) | ||
---|---|---|---|
σ1 | σ2 | σ3 | |
Wang (AS4/8552) [42] | 33.8 | 1.690 × 10−3 | 2.704 × 10−4 |
Ogasawara (IM600/133) [19] | 29.3 | 0.787 × 10−3 | 7.940 × 10−7 |
Abdelal (IM600/133) [21] | 35.97 | 1.145 × 10−3 | 3.876 × 10−6 |
Muñoz (G0986/RTM6-2) [22] | 14.631 | Not available | 2.700 × 10−3 |
Liu (Not specified) [23] | 34.6 | 1.220 × 10−3 | 3.240 × 10−6 |
Kawakami (T700/2510) [95] | 23.09 | 8.000 × 10−3 | 1.1236 × 10−4 |
Kawakami (T800/3900) [95] | 16.58 | 1.028807 × 10−3 | 8.4034 × 10−5 |
Kawakami (IM7/977-3) [95] | 39.68 | 1.964637 × 10−3 | 3.22581 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fan, Y.; Zhupanska, O.I. Challenges and Future Recommendations for Lightning Strike Damage Assessments of Composites: Laboratory Testing and Predictive Modeling. Materials 2024, 17, 744. https://doi.org/10.3390/ma17030744
Wang Y, Fan Y, Zhupanska OI. Challenges and Future Recommendations for Lightning Strike Damage Assessments of Composites: Laboratory Testing and Predictive Modeling. Materials. 2024; 17(3):744. https://doi.org/10.3390/ma17030744
Chicago/Turabian StyleWang, Yeqing, Yin Fan, and Olesya I. Zhupanska. 2024. "Challenges and Future Recommendations for Lightning Strike Damage Assessments of Composites: Laboratory Testing and Predictive Modeling" Materials 17, no. 3: 744. https://doi.org/10.3390/ma17030744
APA StyleWang, Y., Fan, Y., & Zhupanska, O. I. (2024). Challenges and Future Recommendations for Lightning Strike Damage Assessments of Composites: Laboratory Testing and Predictive Modeling. Materials, 17(3), 744. https://doi.org/10.3390/ma17030744