Comparing Torque Transmission of Different Bracket Systems in Combination with Various Archwires Considering Play in the Bracket Slot: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, L.F. The six keys to normal occlusion. Am. J. Orthod. 1972, 62, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Burstone, C.J. The mechanics of the segmented arch techniques. Angle Orthod. 1966, 36, 99–120. [Google Scholar] [CrossRef] [PubMed]
- Rickets, R.M. Bioprogressive Therapy, 2nd ed.; Rocky Mountain Orthodontics: Denver, CO, USA, 1979. [Google Scholar]
- Roth, R.H. The maintenance system and occlusal dynamics. Dent. Clin. N. Am. 1976, 20, 761–788. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.C.; McLaughlin, R.P. Controlled space closure with a preadjusted appliance system. J. Clin. Orthod. 1990, 24, 251–260. [Google Scholar] [PubMed]
- Mittal, M.; Thiruvenkatachari, B.; Sandler, P.J.; Benson, P.E. A three-dimensional comparison of torque achieved with a preadjusted edgewise appliance using a Roth or MBT prescription. Angle Orthod. 2015, 85, 292–297. [Google Scholar] [CrossRef]
- Brauchli, L.M.; Steineck, M.; Wichelhaus, A. Active and passive self-ligation: A myth? Part 1: Torque control. Angle Orthod. 2012, 82, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Arreghini, A.; Lombardo, L.; Mollica, F.; Siciliani, G. Torque expression capacity of 0.018 and 0.022 bracket slots by changing archwire material and cross section. Prog. Orthod. 2014, 15, 53. [Google Scholar] [CrossRef]
- Wichelhaus, A. A new elastic slot system and V-wire mechanics. Angle Orthod. 2017, 87, 774–781. [Google Scholar] [CrossRef]
- Meling, T.R.; Odegaard, J.; Meling, E.O. On mechanical properties of square and rectangular stainless steel wires tested in torsion. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 310–320. [Google Scholar] [CrossRef]
- Meling, T.R.; Odegaard, J. The effect of cross-sectional dimensional variations of square and rectangular chrome-cobalt archwires on torsion. Angle Orthod. 1998, 68, 239–248. [Google Scholar] [CrossRef]
- Joch, A.; Pichelmayer, M.; Weiland, F. Bracket slot and archwire dimensions: Manufacturing precision and third order clearance. J. Orthod. 2010, 37, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, L.; Arreghini, A.; Bratti, E.; Mollica, F.; Spedicato, G.; Merlin, M.; Fortini, A.; Siciliani, G. Comparative analysis of real and ideal wire-slot play in square and rectangular archwires. Angle Orthod. 2015, 85, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, N.R.; Birnie, D.J. Treatment efficiency of conventional vs self-ligating brackets: Effects of archwire size and material. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Badawi, H.M.; Toogood, R.W.; Carey, J.P.; Heo, G.; Major, P.W. Torque expression of self-ligating brackets. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Katsikogianni, E.N.; Reimann, S.; Weber, A.; Karp, J.; Bourauel, C. A comparative experimental investigation of torque capabilities induced by conventional and active, passive self-ligating brackets. Eur. J. Orthod. 2015, 37, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.N.; Sifakakis, I.; Doulis, I.; Eliades, T.; Bourauel, C. Torque efficiency of square and rectangular archwires into 0.018 and 0.022 in. conventional brackets. Prog. Orthod. 2016, 17, 5. [Google Scholar] [CrossRef]
- Sifakakis, I.; Pandis, N.; Makou, M.; Eliades, T.; Katsaros, C.; Bourauel, C. Torque efficiency of different archwires in 0.018- and 0.022-inch conventional brackets. Angle Orthod. 2014, 84, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Brandies, H.; Orthuber, W.; Es-Souni, M.; Meyer, S. Torque transmission between square wire and bracket as a function of measurement, form and hardness parameters. J. Orofac. Orthop. 2000, 61, 258–265. [Google Scholar] [CrossRef]
- Tominaga, J.Y.; Chiang, P.C.; Ozaki, H.; Tanaka, M.; Koga, Y.; Bourauel, C.; Yoshida, N. Effect of play between bracket and archwire on anterior tooth movement in sliding mechanics: A three-dimensional finite element study. J. Dent. Biomech. 2012, 3, 1758736012461269. [Google Scholar] [CrossRef]
- Tominaga, J.Y.; Ozaki, H.; Chiang, P.C.; Sumi, M.; Tanaka, M.; Koga, Y.; Bourauel, C.; Yoshida, N. Effect of bracket slot and archwire dimensions on anterior tooth movement during space closure in sliding mechanics: A 3-dimensional finite element study. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 166–174. [Google Scholar] [CrossRef]
- Odegaard, J.; Meling, T.; Meling, E. An evaluation of the torsional moments developed in orthodontic applications. An in vitro study. Am. J. Orthod. Dentofac. Orthop. 1994, 105, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Keilig, L.; Rahimi, A.; Reimann, S.; Eliades, T.; Jager, A.; Bourauel, C. Numeric modeling of torque capabilities of self-ligating and conventional brackets. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Hirai, M.; Nakajima, A.; Kawai, N.; Tanaka, E.; Igarashi, Y.; Sakaguchi, M.; Sameshima, G.T.; Shimizu, N. Measurements of the torque moment in various archwire-bracket-ligation combinations. Eur. J. Orthod. 2012, 34, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Dalstra, M.; Eriksen, H.; Bergamini, C.; Melsen, B. Actual versus theoretical torsional play in conventional and self-ligating bracket systems. J. Orthod. 2015, 42, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Major, T.W.; Carey, J.P.; Nobes, D.S.; Heo, G.; Major, P.W. Mechanical effects of third-order movement in self-ligated brackets by the measurement of torque expression. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e31–e44. [Google Scholar] [CrossRef] [PubMed]
- Al-Thomali, Y.; Mohamed, R.N.; Basha, S. Torque expression in self-ligating orthodontic brackets and conventionally ligated brackets: A systematic review. J. Clin. Exp. Dent. 2017, 9, e123–e128. [Google Scholar] [CrossRef]
- Morina, E.; Eliades, T.; Pandis, N.; Jager, A.; Bourauel, C. Torque expression of self-ligating brackets compared with conventional metallic, ceramic, and plastic brackets. Eur. J. Orthod. 2008, 30, 233–238. [Google Scholar] [CrossRef]
- Casa, M.A.; Faltin, R.M.; Faltin, K.; Sander, F.G.; Arana-Chavez, V.E. Root resorptions in upper first premolars after application of continuous torque moment. Intra-individual study. J. Orofac. Orthop. 2001, 62, 285–295. [Google Scholar] [CrossRef]
- Bartley, N.; Turk, T.; Colak, C.; Elekdag-Turk, S.; Jones, A.; Petocz, P.; Darendeliler, M.A. Physical properties of root cementum: Part 17. Root resorption after the application of 2.5 degrees and 15 degrees of buccal root torque for 4 weeks: A microcomputed tomography study. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e353–e360. [Google Scholar] [CrossRef]
- Wichelhaus, A.; Dulla, M.; Sabbagh, H.; Baumert, U.; Stocker, T. Stainless steel and NiTi torque archwires and apical root resorption. J. Orofac. Orthop. 2021, 82, 1–12. [Google Scholar] [CrossRef]
- Faltin, R.M.; Arana-Chavez, V.E.; Faltin, K.; Sander, F.G.; Wichelhaus, A. Root resorptions in upper first premolars after application of continuous intrusive forces. Intra-individual study. J. Orofac. Orthop. 1998, 59, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Hotokezaka, H.; Hashimoto, M.; Sirisoontorn, I.; Arita, K.; Kurohama, T.; Darendeliler, M.A.; Yoshida, N. Effects of different types of tooth movement and force magnitudes on the amount of tooth movement and root resorption in rats. Angle Orthod. 2014, 84, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Roscoe, M.G.; Meira, J.B.; Cattaneo, P.M. Association of orthodontic force system and root resorption: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 610–626. [Google Scholar] [CrossRef] [PubMed]
- Taloumis, L.J.; Smith, T.M.; Hondrum, S.O.; Lorton, L. Force decay and deformation of orthodontic elastomeric ligatures. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Major, T.W.; Carey, J.P.; Nobes, D.S.; Heo, G.; Major, P.W. Deformation and warping of the bracket slot in select self-ligating orthodontic brackets due to an applied third order torque. J. Orthod. 2012, 39, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Major, T.W.; Carey, J.P.; Nobes, D.S.; Heo, G.; Melenka, G.W.; Major, P.W. An investigation into the mechanical characteristics of select self-ligated brackets at a series of clinically relevant maximum torquing angles: Loading and unloading curves and bracket deformation. Eur. J. Orthod. 2013, 35, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Archambault, A.; Major, T.W.; Carey, J.P.; Heo, G.; Badawi, H.; Major, P.W. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets. Angle Orthod. 2010, 80, 884–889. [Google Scholar] [CrossRef]
Trade Name | Manufacturer | Material | System | Bracket Slot Width |
---|---|---|---|---|
Mini Sprint® | Forestadent | SS | Twin bracket | 0.022″ |
BioQuick® | Forestadent | SS | SL passive | 0.022″ |
Wave SL® | Dentalline | NiTi | SL passive | 0.022″ |
3M™ SmartClip™ | 3M | NiTi | SL passive | 0.022″ |
Damon® Q | Ormco | SS | SL passive | 0.022″ |
In-Ovation® C | Dentsply Sirona | Ceramic | SL active | 0.022″ |
In-Ovation® R | Dentsply Sirona | SS | SL active | 0.022″ |
Wire | Bracket | Torque | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Nmm | 5 Nmm | 10 Nmm | 15 Nmm | 20 Nmm | 25 Nmm | 30 Nmm | 35 Nmm | 40 Nmm | ||
0.016″ × 0.022″ | Mini Sprint® | 28.77 (0.75) | 31.65 (0.84) | 34.52 (0.98) | 37.31 (1.03) | |||||
BioQuick® | 32.59 (4.83) | 36.72 (2.6) | 41.09 (1.42) | 43.70 (1.31) | ||||||
Wave SL® | 20.06 (1.3) | 22.97 (1.27) | 25.91 (1.23) | 28.75 (1.21) | ||||||
SmartClip™ | 29.74 (0.39) | 32.77 (0.35) | 35.93 (0.55) | 38.75 (0.65) | ||||||
Damon® Q | 21.76 (0.41) | 24.70 (0.42) | 27.64 (0.45) | 30.52 (0.48) | ||||||
In-Ovation® C | 25.33 (0.87) | 27.71 (0.89) | 30.08 (0.95) | 32.38 (1.0) | ||||||
In-Ovation® R | 24.91 (0.36) | 27.46 (0.48) | 30.05 (0.67) | 32.56 (0.77) | ||||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
0.018″ × 0.025″ | Mini Sprint® | 17.95 (0.98) | 19.71 (1.09) | 21.48 (1.2) | 23.15 (1.32) | 24.71 (1.41) | 26.23 (1.44) | 27.75 (1.51) | ||
BioQuick® | 21.11 (0.91) | 22.92 (0.97) | 24.83 (1.07) | 26.52 (1.04) | 28.20 (0.9) | 29.86 (0.82) | 31.07 (0.43) | |||
Wave SL® | 13.28 (1.5) | 14.91 (1.41) | 16.61 (1.36) | 18.25 (1.39) | 19.83 (1.38) | 21.42 (1.34) | 23.03 (1.35) | |||
SmartClip™ | 17.99 (0.46) | 19.61 (0.49) | 21.33 (0.54) | 22.90 (0.57) | 24.45 (0.56) | 25.99 (0.53) | 27.52 (0.50) | |||
Damon® Q | 12.83 (0.36) | 14.56 (0.38) | 16.35 (0.34) | 18.07 (0.33) | 19.74 (0.34) | 21.44 (0.34) | 23.13 (0.31) | |||
In-Ovation® C | 14.85 (0.44) | 16.28 (0.33) | 17.69 (0.30) | 19.13 (0.32) | 20.51 (0.28) | 21.93 (0.26) | 23.36 (0.27) | |||
In-Ovation® R | 14.59 (0.49) | 16.19 (0.47) | 17.81 (0.50) | 19.36 (0.53) | 20.9 (0.57) | 22.41 (0.58) | 23.92 (0.62) | |||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
0.019″ × 0.025″ | Mini Sprint® | 14.11 (1.13) | 15.52 (1.19) | 16.97 (1.26) | 18.33 (1.34) | 19.66 (1.38) | 20.98 (1.27) | 22.31 (1.37) | 23.66 (1.33) | 25.02 (1.27) |
BioQuick® | 18.73 (1.23) | 20.45 (1.56) | 22.30 (1.85) | 23.89 (1.95) | 25.37 (1.91) | 26.87 (1.79) | 28.00 (1.03) | 29.65 (0.75) | 31.20 (0.72) | |
Wave SL® | 9.68 (1.12) | 11.25 (1.01) | 12.89 (0.93) | 14.45 (0.87) | 15.98 (0.82) | 17.45 (0.77) | 18.95 (0.71) | 20.44 (0.66) | 21.95 (0.6) | |
SmartClip™ | 13.48 (0.35) | 15.17 (0.4) | 16.97 (0.54) | 18.49 (0.67) | 19.90 (0.74) | 21.27 (0.77) | 22.63 (0.77) | 24.01 (0.75) | 25.39 (0.70) | |
Damon® Q | 8.39 (1.21) | 10.13 (0.88) | 12.08 (0.29) | 13.61 (0.26) | 15.13 (0.23) | 16.63 (0.22) | 18.09 (0.25) | 19.58 (0.28) | 21.05 (0.31) | |
In-Ovation® C | 12.26 (0.79) | 13.50 (0.80) | 14.76 (0.81) | 16.01 (0.81) | 17.22 (0.85) | 18.43 (0.84) | 19.69 (0.9) | 20.93 (0.92) | 22.19 (0.93) | |
In-Ovation® R | 11.37 (0.61) | 12.86 (0.61) | 14.38 (0.61) | 15.91 (0.64) | 17.35 (0.69) | 18.81 (0.74) | 20.29 (0.83) | 21.73 (0.89) | 23.18 (0.92) | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Wire | Bracket | Torque | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Nmm | 5 Nmm | 10 Nmm | 15 Nmm | 20 Nmm | 25 Nmm | 30 Nmm | 35 Nmm | 40 Nmm | ||
0.016″ × 0.022″ | Mini Sprint® | 28.87 (0.73) | 31.64 (0.83) | 34.48 (1.01) | 37.08 (0.98) | |||||
BioQuick® | 34.90 (3.56) | 38.43 (1.99) | 42.14 (1.47) | 44.52 (0.78) | ||||||
Wave SL® | 20.64 (1.12) | 23.48 (1.06) | 26.32 (1.97) | 29.09 (1.17) | ||||||
SmartClip™ | 30.30 (0.63) | 33.13 (0.49) | 36.06 (0.44) | 38.69 (0.51) | ||||||
Damon® Q | 22.08 (0.64) | 24.97 (0.60) | 27.88 (0.62) | 30.73 (0.61) | ||||||
In-Ovation® C | 25.24 (0.63) | 27.78 (0.72) | 30.30 (0.81) | 32.86 (0.90) | ||||||
In-Ovation® R | 24.85 (0.46) | 27.69 (0.55) | 30.52 (0.70) | 33.33 (0.79) | ||||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
0.018″ × 0.025″ | Mini Sprint® | 17.91 (0.91) | 19.6 (1.03) | 21.35 (1.18) | 22.99 (1.25) | 24.55 (1.29) | 26.06 (1.32) | 27.57 (1.36) | ||
BioQuick® | 20.51 (1.07) | 22.39 (1.11) | 24.36 (1.23) | 26.04 (1.20) | 27.68 (1.06) | 29.37 (0.86) | 31.01 (0.71) | |||
Wave SL® | 11.93 (1.25) | 14.14 (1.16) | 16.38 (1.31) | 18.31 (1.44) | 20.21 (1.75) | 21.98 (1.81) | 23.88 (1.96) | |||
SmartClip™ | 17.92 (0.33) | 19.51 (0.31) | 21.14 (0.36) | 22.69 (0.38) | 24.20 (0.41) | 25.70 (0.43) | 27.19 (0.44) | |||
Damon® Q | 12.39 (0.36) | 14.19 (0.31) | 16.05 (0.30) | 17.88 (0.34) | 19.65 (0.37) | 21.41 (0.39) | 23.15 (0.42) | |||
In-Ovation® C | 14.48 (0.55) | 16.10 (0.53) | 17.73 (0.54) | 19.31 (0.53) | 21.02 (0.56) | 22.62 (0.52) | 24.25 (0.50) | |||
In-Ovation® R | 15.04 (0.54) | 16.74 (0.60) | 18.45 (0.67) | 20.16 (0.70) | 21.85 (0.72) | 23.51 (0.71) | 25.16 (0.69) | |||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
0.019″ × 0.025″ | Mini Sprint® | 14.30 (1.7) | 15.71 (1.75) | 17.17 (1.80) | 18.6 (1.91) | 19.96 (1.92) | 21.30 (1.91) | 22.62 (1.88) | 23.92 (1.84) | 25.23 (1.71) |
BioQuick® | 18.54 (1.16) | 20.15 (1.38) | 21.94 (1.54) | 23.43 (1.63) | 24.87 (1.59) | 26.38 (1.47) | 27.96 (1.26) | 29.63 (1.01) | 30.87 (1.15) | |
Wave SL® | 9.05 (1.25) | 10.74 (1.09) | 12.55 (0.97) | 14.25 (0.91) | 15.95 (0.90) | 17.73 (0.85) | 19.54 (0.91) | 21.37 (0.96) | 23.23 (1.04) | |
SmartClip™ | 14.25 (0.36) | 15.76 (0.33) | 17.34 (0.38) | 18.78 (0.47) | 20.13 (0.56) | 21.50 (0.58) | 22.84 (0.57) | 24.18 (0.56) | 25.52 (0.52) | |
Damon® Q | 6.63 (3.73) | 8.92 (2.44) | 11.79 (0.56) | 13.40 (0.56) | 14.98 (0.58) | 16.52 (0.56) | 18.05 (0.57) | 19.59 (0.57) | 21.12 (0.58) | |
In-Ovation® C | 11.58 (0.56) | 12.96 (0.56) | 14.34 (0.58) | 15.73 (0.59) | 17.12 (0.60) | 18.50 (0.59) | 19.92 (0.60) | 21.33 (0.58) | 22.76 (0.56) | |
In-Ovation® R | 11.25 (0.78) | 12.87 (0.78) | 14.51 (0.79) | 16.14 (0.81) | 17.77 (0.84) | 19.40 (0.84) | 20.99 (0.84) | 22.60 (0.82) | 24.20 (0.81) | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Wire | Bracket | Angle | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5° | 10° | 15° | 20° | 25° | 30° | 35° | 40° | 45° | ||
0.016″ × 0.022″ | Mini Sprint® | 0.10 (0.08) | 0.12 (0.10) | 0.23 (0.23) | 0.33 (0.37) | 0.33 (0.49) | 2.47 (1.27) | 10.88 (1.75) | 20.27 (1.84) | 30.72 (1.11) |
BioQuick® | 0.51 (0.19) | 0.52 (0.24) | 0.42 (0.25) | 0.52 (0.19) | 0.72 (0.14) | 1.23 (1.06) | 2.69 (2.11) | 8.31 (2.37) | 17.15 (1.90) | |
Wave SL® | 0.17 (0.04) | 0.17 (0.05) | 0.17 (0.11) | 1.18 (0.82) | 8.42 (2.17) | 17.23 (2.21) | 26.19 (2.14) | 35.07 (1.96) | 43.63 (1.68) | |
SmartClip™ | 0.33 (0.23) | 0.36 (0.27) | 0.37 (0.31) | 0.37 (0.37) | 0.72 (0.38) | 1.79 (0.62) | 8.51 (0.91) | 17.32 (1.11) | 27.19 (0.83) | |
Damon® Q | 0.14 (0.08) | 0.13 (0.06) | 0.24 (0.10) | 0.41 (0.13) | 5.51 (0.72) | 14.08 (0.85) | 22.98 (0.86) | 31.79 (0.66) | 40.38 (0.37) | |
In-Ovation® C | 0.69 (0.65) | 0.69 (0.69) | 0.42 (0.51) | 0.60 (0.33) | 0.96 (0.47) | 9.91 (1.99) | 20.67 (2.16) | 31.20 (2.35) | 41.28 (2.55) | |
In-Ovation® R | 0.29 (0.09) | 0.25 (0.11) | 0.20 (0.14) | 0.29 (0.15) | 0.91 (0.51) | 10.00 (1.24) | 19.95 (1.71) | 30.07 (2.12) | 39.97 (2.37) | |
p-value | <0.001 | <0.001 | 0.17 | 0.26 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
0.018″ × 0.025″ | Mini Sprint® | 0.18 (0.14) | 0.18 (0.11) | 0.22 (0.20) | 6.03 (3.02) | 21.10 (4.28) | 37.53 (5.00) | |||
BioQuick® | 0.34 (0.34) | 0.60 (0.38) | 1.04 (0.78) | 1.43 (0.91) | 10.58 (3.15) | 25.20 (2.19) | ||||
Wave SL® | 0.20 (0.14) | 0.30 (0.27) | 5.79 (3.01) | 20.59 (4.26) | 36.07 (4.14) | 51.52 (4.12) | ||||
SmartClip™ | 0.42 (0.12) | 0.46 (0.28) | 0.82 (0.61) | 6.16 (1.44) | 21.79 (1.80) | 37.93 (1.37) | ||||
Damon® Q | 0.09 (0.08) | 0.29 (0.24) | 6.13 (0.99) | 20.73 (1.93) | 35.36 (0.88) | 49.33 (0.47) | ||||
In-Ovation® C | 0.76 (0.97) | 1.28 (0.36) | 1.76 (0.94) | 18.15 (0.89) | 35.54 (0.87) | 52.36 (1.04) | ||||
In-Ovation® R | 0.50 (0.23) | 0.68 (0.37) | 2.15 (0.72) | 17.25 (1.73) | 33.69 (2.09) | 50.35 (2.40) | ||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||
0.019″ × 0.025″ | Mini Sprint® | 0.10 (0.09) | 0.46 (0.32) | 4.10 (3.41) | 21.33 (5.18) | 39.70 (4.42) | ||||
BioQuick® | 1.07 (0.27) | 0.37 (0.22) | 1.26 (0.70) | 5.07 (3.23) | 18.69 (5.56) | |||||
Wave SL® | 0.51 (0.27) | 2.31 (2.03) | 16.68 (2.77) | 33.49 (2.23) | 49.80 (1.54) | |||||
SmartClip™ | 0.19 (0.11) | 0.82 (0.75) | 4.67 (1.00) | 20.44 (2.70) | 38.50 (2.57) | |||||
Damon® Q | 0.88 (1.31) | 3.95 (1.64) | 19.62 (0.08) | 36.49 (0.95) | 53.20 (1.40) | |||||
In-Ovation® C | 0.91 (0.66) | 1.13 (0.48) | 10.93 (3.20) | 31.29 (3.57) | 50.73 (3.50) | |||||
In-Ovation® R | 0.25 (0.29) | 1.39 (0.41) | 12.04 (2.15) | 29.22 (2.87) | 46.19 (3.32) | |||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Wire | Bracket | Angle | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5° | 10° | 15° | 20° | 25° | 30° | 35° | 40° | 45° | ||
0.016″ × 0.022″ | Mini Sprint® | 0.12 (0.10) | 0.10 (0.10) | 0.11 (0.06) | 0.15 (0.09) | 0.22 (0.18) | 2.62 (1.08) | 10.99 (1.91) | 20.95 (1.61) | 31.31 (1.00) |
BioQuick® | 0.49 (0.18) | 0.37 (0.17) | 0.18 (0.17) | 0.30 (0.11) | 0.62 (0.28) | 0.51 (0.38) | 3.28 (1.61) | 6.90 (2.11) | 14.62 (1.91) | |
Wave SL® | 0.15 (0.02) | 0.12 (0.02) | 0.09 (0.05) | 0.49 (0.50) | 7.67 (1.84) | 16.72 (2.14) | 25.79 (2.44) | 34.65 (2.44) | 42.97 (2.29) | |
SmartClip™ | 0.25 (0.08) | 0.26 (0.10) | 0.29 (0.15) | 0.40 (0.25) | 0.77 (0.48) | 1.40 (0.94) | 8.14 (0.75) | 17.55 (0.91) | 27.19 (0.52) | |
Damon® Q | 0.11 (0.05) | 0.22 (0.16) | 0.45 (0.13) | 0.67 (0.10) | 5.10 (0.94) | 13.75 (1.12) | 22.64 (1.13) | 31.77 (1.06) | 40.47 (0.83) | |
In-Ovation® C | 1.28 (0.94) | 1.08 (0.69) | 0.82 (0.54) | 0.65 (0.57) | 0.94 (0.62) | 9.44 (1.51) | 19.20 (1.76) | 29.00 (1.83) | 38.22 (2.16) | |
In-Ovation® R | 0.21 (0.12) | 0.31 (0.11) | 0.48 (0.07) | 0.39 (0.23) | 1.07 (0.55) | 9.15 (1.20) | 18.07 (1.52) | 27.34 (1.77) | 36.56 (2.05) | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
0.018″ × 0.025″ | Mini Sprint® | 0.20 (0.13) | 0.23 (0.14) | 0.32 (0.26) | 6.45 (2.91) | 21.63 (4.09) | 38.02 (4.50) | |||
BioQuick® | 1.03 (0.62) | 0.78 (0.66) | 0.53 (0.83) | 1.66 (1.79) | 11.89 (3.37) | 26.68 (2.19) | ||||
Wave SL® | 0.23 (0.17) | 0.33 (0.33) | 7.13 (2.42) | 20.06 (3.88) | 33.40 (5.37) | 46.57 (6.20) | ||||
SmartClip™ | 0.61 (0.16) | 0.75 (0.37) | 0.82 (0.65) | 6.50 (0.99) | 22.71 (1.42) | 39.22 (1.78) | ||||
Damon® Q | 0.37 (0.34) | 1.02 (0.32) | 7.11 (0.81) | 21.02 (1.07) | 35.18 (1.19) | 49.48 (1.10) | ||||
In-Ovation® C | 1.00 (0.99) | 0.74 (0.57) | 1.92 (1.26) | 17.08 (1.65) | 32.29 (1.44) | 47.06 (1.45) | ||||
In-Ovation® R | 1.60 (0.28) | 1.27 (0.33) | 1.30 (1.12) | 14.56 (2.07) | 29.48 (2.12) | 44.59 (2.09) | ||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||||
0.019″ × 0.025″ | Mini Sprint® | 0.13 (0.07) | 0.22 (0.11) | 4.17 (3.09) | 20.29 (6.70) | 38.79 (6.69) | ||||
BioQuick® | 1.11 (0.57) | 0.94 (0.30) | 0.80 (1.03) | 5.35 (3.75) | 19.98 (5.01) | |||||
Wave SL® | 0.35 (0.29) | 3.40 (2.42) | 17.16 (2.52) | 31.32 (2.26) | 44.82 (2.83) | |||||
SmartClip™ | 0.26 (0.09) | 0.69 (0.70) | 2.84 (1.09) | 19.57 (1.98) | 38.00 (2.00) | |||||
Damon® Q | 1.50 (2.13) | 5.08 (2.09) | 20.13 (1.82) | 36.34 (1.90) | 52.85 (2.08) | |||||
In-Ovation® C | 1.23 (0.83) | 0.54 (0.65) | 12.33 (2.14) | 30.29 (2.07) | 47.64 (1.84) | |||||
In-Ovation® R | 1.41 (0.23) | 1.05 (0.28) | 11.52 (2.54) | 26.89 (2.61) | 42.48 (2.44) | |||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wichelhaus, A.; Guggenbühl, S.; Hötzel, L.; Seidel, C.L.; Sabbagh, H.; Hoffmann, L. Comparing Torque Transmission of Different Bracket Systems in Combination with Various Archwires Considering Play in the Bracket Slot: An In Vitro Study. Materials 2024, 17, 684. https://doi.org/10.3390/ma17030684
Wichelhaus A, Guggenbühl S, Hötzel L, Seidel CL, Sabbagh H, Hoffmann L. Comparing Torque Transmission of Different Bracket Systems in Combination with Various Archwires Considering Play in the Bracket Slot: An In Vitro Study. Materials. 2024; 17(3):684. https://doi.org/10.3390/ma17030684
Chicago/Turabian StyleWichelhaus, Andrea, Simon Guggenbühl, Linus Hötzel, Corinna L. Seidel, Hisham Sabbagh, and Lea Hoffmann. 2024. "Comparing Torque Transmission of Different Bracket Systems in Combination with Various Archwires Considering Play in the Bracket Slot: An In Vitro Study" Materials 17, no. 3: 684. https://doi.org/10.3390/ma17030684