Quantitative Characterization by Transmission Electron Microscopy and Its Application to Interfacial Phenomena in Crystalline Materials
Abstract
:1. Introduction
2. Solid–Vapor Interface (Surface) Segregation Analyzed by TEM-EDS
3. Experimental Characterization of the Local Magnetic Moment by TEM-EELS and Its Grain Boundary Character Dependence
4. Dynamics and Quantitative Evaluation Associated with the Grain Boundary by In Situ Experiments
5. Prospects of the Quantitative Characterization of Interface and Grain Boundary by (S)TEM
6. Concluding Remarks
- EDS analysis, which is frequently used in chemical analysis, such as the identification of the elements and the chemical compositions, was explained. Based on this, the solid–vapor (surface) segregation of doped Y2O3 within a few nm from the surface in ZrO2 nanoparticles was explored.
- The TEM-EELS technique, which is often used to understand the electronic structure, is conducted to characterize the local magnetic moments closely related to 3D electrons. Also, the grain boundary character dependence and the effect of the grain boundary segregation of the magnetic moments are quantitatively obtained.
- The characterization of the dynamics of materials by an in situ experiment is also presented. The in situ straining experiments succeeded in the direct stress measurement at the dislocation transfer to the grain boundary and the capture of the microstructure evolution to form grain boundaries during plastic deformation.
- In addition to the application of EDS and EELS to characterize the interface and grain boundary that the author reported so far, the prospects of the characterization of the interface and grain boundary are stated for further improvement of the quantitative analysis.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruska, E. The Development of the Electron Microscope and of Electron Microscopy. Available online: https://www.nobelprize.org/prizes/physics/1986/ruska/lecture/ (accessed on 12 September 2023).
- McMullan, D. Scanning electron microscopy 1928–1965. Scanning 1995, 17, 175–185. [Google Scholar] [CrossRef]
- Hirsch, P.B.; Howie, A.; Nicholson, R.B.; Pashley, D.W.; Whelan, M.J.; Marton, L. Electron Microscopy of Thin Crystals, 2nd ed.; Krieger Publishing Company: Malabar, FL, USA, 1977. [Google Scholar]
- Reimer, L.; Kohl, H. Transmission Electron Microscopy, 5th ed.; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, B. Transmission Electron Microscopy, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Fultz, B.; Howe, J.M. Transmission Electron Microscopy and Diffractometry of Materials, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Spence, J.C.H. High-Resolution Electron Microscopy, 4th ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Carter, C.B.; Williams, D.B. (Eds.) Transmission Electron Microscopy Diffraction, Imaging, and Spectroscopy; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Mooney, P.E.; Fan, G.Y.; Meyer, D.E.; Truong, K.V.; Bui, D.B.; Krivanek, O.L. Slow-Scan CCD Camera for Transmission Electron Microscopy. In Proceedings of the 12th International Congress for Electron Microscopy, Seattle, WA, USA, 12–18 August 1990; San Francisco Press: San Francisco, CA, USA, 1990; Volume 1, p. 164. [Google Scholar]
- Ishizuka, K. Analysis of electron image detection efficiency of slow-scan CCD cameras. Ultramicroscopy 1993, 52, 7–20. [Google Scholar] [CrossRef]
- Fan, G.Y.; Ellisman, M.H. Digital imaging in transmission electron microscopy. J. Microsc. Oxford 2000, 200, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Oikawa, T.; Katoh, T.; Miyahara, J.; Harada, Y. Application of the “imaging plate” to TEM image recording. Ultramicroscopy 1988, 25, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Oikawa, T.; Harada, Y.; Miyahara, J. Development of the imaging plate for the transmission electron microscope and its characteristics. J. Electron Microsc. 1990, 39, 433–436. [Google Scholar] [CrossRef]
- Shindo, D.; Hiraga, K.; Oikawa, T.; Mori, N. Quantification of electron diffraction with imaging plate. J. Electron Microsc. 1990, 39, 449–453. [Google Scholar] [CrossRef]
- Murakami, Y.; Shindo, D. Lattice modulation preceding to the R-phase transformation in a Ti50Ni48Fe2 alloy studied by TEM with energy-filtering. Mater. Trans. JIM 1999, 40, 1092–1097. [Google Scholar] [CrossRef]
- Murakami, Y.; Shibuya, H.; Shindo, D. Precursor effects of martensitic transformations in Ti-based alloys studied by electron microscopy with energy filtering. J. Microsc. 2001, 203, 22–33. [Google Scholar] [CrossRef]
- Ii, S.; Nishida, M.; Murakammi, Y.; Shindo, D. Martensitic transformation in Ti50Pd50.0−XFeX alloy. J. Phys. Arch. 2003, 112, 1035–1038. [Google Scholar] [CrossRef]
- Scopus. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 12 September 2023).
- McLean, D. Grain Boundaries in Metals; Clarendon Press: Oxford, UK, 1957. [Google Scholar]
- Gleiter, H.; Charmers, B. Structure of grain boundaries. Prog. Mater. Sci. 1972, 16, 1. [Google Scholar] [CrossRef]
- Sutton, A.P.; Balluffi, R.W. Interfaces in Crystalline Materials; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Howe, J.M. Interfaces in Materials; John Wiley & Sons, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Chadwick, G.A.; Smith, D.A. Grain Boundary Structure and Properties; Academic Press: London, UK, 1976. [Google Scholar]
- Ishida, Y. (Ed.) In Proceedings of Fourth Japan Institute of Metals International Symposium on Grain Boundary Structure and Related Phenomena, Minakami, Japan, 25–29 November 1985; The Japan Institute of Metals: Sendai, Japan, 1986.
- Watanabe, T. Approach to grain boundary design for strong and ductile polycrystals. Res. Mech. 1984, 11, 47–84. [Google Scholar]
- Watanabe, T. Grain boundary engineering: Historical perspective and future prospects. J. Mater. Sci. 2011, 46, 4095–4115. [Google Scholar] [CrossRef]
- Intergranular and Interphase Boundaries in Materials, IIB2014. Available online: https://iib2024.org/ (accessed on 12 November 2023).
- Special Issue: Interface Science, Vol. 9, Iss. 3-4. Available online: https://link.springer.com/journal/10793/volumes-and-issues/9-3 (accessed on 12 November 2023).
- Interface Science Section in Journal of Materials Science, Vol. 40, Iss. 11. Available online: https://link.springer.com/journal/10853/volumes-and-issues/40-11 (accessed on 12 November 2023).
- Special Issue: Intergranular and Interphase Boundaries in Materials in Journal of Materials Science, Vol. 43, Iss.11. Available online: https://link.springer.com/journal/10853/volumes-and-issues/43-11 (accessed on 12 November 2023).
- Special Issue: Intergranular and Interphase Boundaries in Materials in Journal of Materials Science, Vol. 46, Iss. 12. Available online: https://link.springer.com/journal/10853/volumes-and-issues/46-12 (accessed on 12 November 2023).
- Special Section: Intergranular and Interphase Boundaries in Journal of Materials Science, Vol. 49, Iss. 11. Available online: https://link.springer.com/journal/10853/volumes-and-issues/49-11 (accessed on 12 November 2023).
- Special Section: Intergranular and Interphase Boundaries in Journal of Materials Science, Vol. 52, Iss. 8. Available online: https://link.springer.com/journal/10853/volumes-and-issues/52-8 (accessed on 12 November 2023).
- Special Section: Interface Science in Journal of Materials Science, Vol. 55, Iss. 22. Available online: https://link.springer.com/journal/10853/volumes-and-issues/55-22 (accessed on 12 November 2023).
- Goldstein, J.I.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Romig, A.D., Jr.; Lyman, C.E.; Fiori, C.; Lifshin, E. Scanning Electron Microscopy and X-ray Analysis, 2nd ed.; Plenum Press: New York, NY, USA; London, UK, 1992. [Google Scholar]
- Reimer, L. Scanning Electron Microscopy, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Wilkinson, A.J.; Meaden, G.; Dingley, D.J. High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 2006, 106, 307–313. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Kumar, M.; Adams, B.L.; Field, D.P. Electron Backscatter Diffraction in Materials Science, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D. Coupling of electron channeling with EBSD: Toward the quantitative characterization of deformation structures in the SEM. J. Miner. Met. Mater. Soc. 2013, 65, 1229–1236. [Google Scholar] [CrossRef]
- Watanabe, M.; Williams, D.B. The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new zeta-factor methods. J. Microsc. 2006, 221, 89–109. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M. Microscopy hacks: Development of various techniques to assist quantitative nanoanalysis and advanced electron microscopy. Microscopy 2013, 62, 217–241. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Onishi, I.; Ishikawa, T.; Yagi, K.; Iwama, T.; Miyatake, K.; Iwasawa, Y.; Matsushita, M.; Kaneyama, T.; Kondo, Y. A double silicon drift type detector system for EDS with ultrahigh efficiency and throughput for TEM. Microsc. Microanal. 2014, 20, 1150–1151. [Google Scholar] [CrossRef]
- D’Alsonfo, A.J.; Freitag, B.; Klenov, D.; Allen, L.J. Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys. Rev. Lett. 2010, 81, 100101(R). [Google Scholar] [CrossRef]
- Kothleitner, G.; Neish, M.J.; Lugg, N.R.; Findlay, S.D.; Grogger, W.; Hofer, F.; Allen, L.J. Quantitative elemental mapping at atomic resolution using X-ray spectroscopy. Phys. Rev. Lett. 2014, 112, 085501. [Google Scholar] [CrossRef]
- Lugg, N.R.; Kothleitner, G.; Shibata, N.; Ikuhara, Y. On the quantitativeness of EDS STEM. Ultramicroscopy 2015, 151, 150–159. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, K.E.; Yankovich, A.B.; Beche, A.; Luysberg, M.; Brown, H.G.; Findlay, S.D.; Heggen, M.; Allen, L.J. Optimizing experimental conditions for accurate quantitative energy-dispersive X-ray analysis of interfaces at the atomic scale. Microsc. Microanal. 2021, 27, 528–542. [Google Scholar] [CrossRef]
- Watanabe, M.; Egerton, R.F. Evolution in X-ray analysis from micro to atomic scales in aberration-corrected scanning transmission electron microscopes. Microscopy 2022, 71 (Suppl. S1), i132–i147. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Yokoi, T.; Kumamoto, A.; Yoshiya, M.; Ikuhara, Y.; Shibata, N. Atomically ordered solute segregation behaviour in an oxide grain boundary. Nat. Commun. 2016, 7, 11079. [Google Scholar] [CrossRef] [PubMed]
- Futazuka, T.; Ishikawa, R.; Shibata, N.; Ikuhara, Y. Grain boundary structural transformation induced by co-segregation of aliovalent dopants. Nat. Commun. 2022, 13, 5299. [Google Scholar] [CrossRef] [PubMed]
- Langenohl, L.; Brink, T.; Richter, G.; Dehm, G.; Liebscher, C.H. Atomic-resolution observations of silver segregation in a [111] tilt grain boundary in copper. Phys. Rev. B 2023, 107, 134112. [Google Scholar] [CrossRef]
- Ii, S.; Yoshida, H.; Matsui, K.; Ohmichi, N.; Ikuhara, Y. Microstructure and surface segregation of 3 mol% Y2O3-doped ZrO2 particles. J. Am. Ceram. Soc. 2006, 89, 2952–2955. [Google Scholar] [CrossRef]
- Matsui, K.; Horikoshi, H.; Ohmichi, N.; Ohgai, M.; Yoshida, H.; Ikuhara, Y. Cubic-Formation and Grain-Growth Mechanisms in Tetragonal Zirconia Polycrystal. J. Am. Ceram. Soc. 2003, 86, 1401–1408. [Google Scholar] [CrossRef]
- Rühle, M.; Heuer, A.H. Phase transformations in ZrO2-containing ceramics: II, The martensitic reaction in t-ZrO2. Adv. Ceram. 1983, 12, 14–32. [Google Scholar]
- Kelly, P.M.; Rose, L.R.F. The martensitic transformation in ceramics-Its role in transformation toughening. Prog. Mater. Sci. 2002, 47, 463–557. [Google Scholar] [CrossRef]
- Bansal, G.K.; Heuer, A.H. On a martensitic phase transformation in zirconia (ZrO2)—I. Mettallographic evidence. Acta Metall. 1972, 20, 1281–12899. [Google Scholar] [CrossRef]
- Bansal, G.K.; Heuer, A.H. On a martensitic phase transformation in zirconia (ZrO2)—II. Crystallographic aspects. Acta Metall. 1974, 22, 409–417. [Google Scholar] [CrossRef]
- Gupta, T.K.; Bechtold, J.H.; Kuznicki, R.C.; Cadoff, L.H.; Rossing, B.R. Stabilization of tetragonal phase in polycrystalline zirconia. J. Mater. Sci. 1977, 12, 2421–2426. [Google Scholar] [CrossRef]
- Gupta, T.K.; Lange, F.F.; Bechtold, J.H. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase. J. Mater. Sci. 1978, 13, 1464–1470. [Google Scholar] [CrossRef]
- Egerton, R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed.; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Mizoguchi, T.; Olovsson, W.; Ikeno, H.; Tanaka, I. Theoretical ELNES using one-particle and multi-particle calculations. Micron 2010, 41, 695–709. [Google Scholar] [CrossRef]
- Ikeno, H.; Mizoguchi, T. Basics and applications of ELNES calculations. Microscopy 2017, 66, 305–327. [Google Scholar] [CrossRef]
- Colliex, C. From early to present and future achievements of EELS in the TEM. Eur. Phys. J. Appl. Phys. 2022, 97, 38. [Google Scholar] [CrossRef]
- Pearson, D.H.; Ahn, C.C.; Fultz, B. White lines and d-electron occupancies for the 3d and 4d transition metals. Phys. Rev. B 1993, 47, 8471–8478. [Google Scholar] [CrossRef] [PubMed]
- Leapman, R.D.; Grunes, L.A.; Fejes, P.L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 1982, 26, 614–636. [Google Scholar] [CrossRef]
- Pease, D.M.; Fasihuddin, A.; Daniel, M.; Budnick, J.I. Method of linearizing the 3d L3/L2 white line ratio as a function of magnetic moment. Ultramicroscopy 2001, 88, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ii, S.; Matsunaga, K.; Hirayama, K.; Fujii, H.; Tsurekawa, S. Experimental Evaluation of Local Magnetic Moment in 3d Transition Metals by TEM/EELS Technique. In Proceedings of the APMC 10: 10th Asia-Pacific Microscopy Conference/ICONN 2012: The 2012 International Conference on Nanoscience and Nanotechnology/ACMM 22: 22nd Australian Conf. on Microscopy and Microanalysis, Perth, WA, Australia, 5–9 February 2012; pp. 414–415. [Google Scholar]
- Ii, S.; Hirayama, K.; Matsunaga, K.; Fujii, H.; Tsurekawa, S. Direct measurement of local magnetic moments at grain boundaries in iron. Scr. Mater. 2013, 68, 253–256. [Google Scholar] [CrossRef]
- Hirayama, K.; Ii, S.; Tsurekawa, S. Transmission electron microscopy/electron energy loss spectroscopy measurements and ab initio calculation of local magnetic moments at nickel grain boundaries. Sci. Technol. Adv. Mater. 2014, 15, 015005. [Google Scholar] [CrossRef]
- Ii, S.; Hirayama, K.; Tsurekawa, S. Experimental confirmation of grain boundary magnetism in Fe–Si and Fe–Sn Alloys by TEM-EELS. Mater. Trans. 2019, 60, 636–641. [Google Scholar] [CrossRef]
- Goodenough, J.B. A theory of domain creation and coercive force in polycrystalline ferromagnetics. Phys. Rev. 1954, 95, 917–932. [Google Scholar] [CrossRef]
- Yamaura, S.; Furuya, Y.; Watanabe, T. The effect of grain boundary microstructure on Barkhausen noise in ferromagnetic materials. Acta Mater. 2001, 49, 3019–3027. [Google Scholar] [CrossRef]
- Kawahara, K.; Ando, K.; Nogiwa, Y.; Yagyu, S.; Tsurekawa, S.; Watanabe, T. Observation of interaction between grain boundaries and magnetic domain by Lorentz microscopy. Ann. Chim. Sci. Mater. 2002, 27, S269–S278. [Google Scholar]
- Hampel, K.; Vvedensky, D.D.; Crampin, S. Magnetic structure near (310) tilt boundaries in iron. Phys. Rev. B 1993, 47, 4810(R). [Google Scholar] [CrossRef]
- Tobin, A.G.; Paul, D.I. Stability of ferromagnetic domain structures at grain boundaries. J. Appl. Phys. 1969, 40, 3611–3614. [Google Scholar] [CrossRef]
- Lin, I.N.; Mishra, R.; Thomas, G. Interaction of magnetic domain walls with microstructural features in spinel ferrites. IEEE Trans. Magn. 1984, 20, 134–139. [Google Scholar] [CrossRef]
- Szmaja, W. Investigations of the domain structure of anisotropic sintered Nd–Fe–B-based permanent magnets. J. Magn. Magn. Mater. 2006, 301, 546–561. [Google Scholar] [CrossRef]
- Crampin, S.; Vvedensky, D.D.; MacLaren, J.M.; Eberhart, M.E. Electronic structure near (210) tilt boundaries in nickel. Phys. Rev. B 1989, 40, 3413–3416. [Google Scholar] [CrossRef]
- Turek, I.; Drchal, V.; Kudrnovský, J.; Šob, M.; Weinberger, P. Electronic Structure of Disordered Alloys, Surface and Interfaces; Kluwer Academic: Boston, MA, USA, 1997; p. 244. [Google Scholar]
- Šob, M.; Turek, I.; Wang, L.; Vitek, V. Application of Ab Initio Electronic Structure Calculations to Grain Boundary Structure. In Proceedings of the 10th International Metallurgical Materials Conference (METAL 2001), Ostrava, Czech Republic, 15–17 May 2001; pp. 1–10. [Google Scholar]
- Wu, R.; Freeman, A.J.; Olson, G.B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Phys. Rev. B 1996, 53, 7504–7509. [Google Scholar] [CrossRef]
- Siegel, D.J.; Hamilton, J.C. Computational study of carbon segregation and diffusion within a nickel grain boundary. Acta Mater. 2005, 53, 87–96. [Google Scholar] [CrossRef]
- Čák, M.; Šob, M.; Hafner, J. First-principles study of magnetism at grain boundaries in iron and nickel. Phys. Rev. B 2008, 78, 054418. [Google Scholar] [CrossRef]
- Wachowicz, E.; Kiejna, A. Effect of impurities on grain boundary cohesion in bcc iron. Comp. Mater. Sci. 2008, 43, 736–743. [Google Scholar] [CrossRef]
- Všianská, M.; Šob, M. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel. Phys. Rev. B 2011, 84, 014418. [Google Scholar] [CrossRef]
- Všianská, M.; Šob, M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mater. Sci. 2011, 56, 817–840. [Google Scholar] [CrossRef]
- Fitzsimmons, M.R.; Röll, A.; Burkel, E.; Sickafus, K.E.; Nastasi, M.A.; Smith, G.S.; Pynn, R. The magnetization of a grain boundary in nickel. Nanostruct. Mater. 1995, 6, 539–542. [Google Scholar] [CrossRef]
- Gu, H.; Čeh, M.; Stemmer, S.; Müllejans, H.; Rühle, M. A quantitative approach for spatially-resolved electron energy-loss spectroscopy of grain boundaries and planar defects on a subnanometer scale. Ultramicroscopy 1995, 59, 215–227. [Google Scholar] [CrossRef]
- Gu, H.; Cannon, R.M.; Rühle, M. Composition and chemical width of ultrathin amorphous films at grain boundaries in silicon nitride. J. Mater. Res. 1998, 13, 376–387. [Google Scholar] [CrossRef]
- Szklarz, K.E.; Wayman, M.L. The effects of ferromagnetism on intergranular segregation in iron. Acta Metall. 1981, 29, 341–349. [Google Scholar] [CrossRef]
- Ishida, K.; Yokoyama, S.; Nishizawa, T. Grain boundary segregation in ferromagnetic alloys. Acta Metall. 1985, 33, 255–264. [Google Scholar] [CrossRef]
- Lejček, P.; Hofmann, S.; Paider, V. Solute segregation and classification of [100] tilt grain boundaries in α-iron: Consequences for grain boundary engineering. Acta Mater. 2003, 51, 39513963. [Google Scholar] [CrossRef]
- Ainselie, N.G.; Hoffman, R.E.; Seybolt, A.U. Sulfur segregation at α-iron grain boundaries—I. Acta Metall. 1960, 8, 523–527. [Google Scholar] [CrossRef]
- Seah, M.P.; Hondros, E.D. Use of a “BET” analogue equation to describe grain boundary segregation. Scr. Metall. 1973, 7, 735–737. [Google Scholar] [CrossRef]
- Watanabe, T.; Kitamura, S.; Karashima, S. Grain boundary hardening and segregation in alpha iron-tin alloy. Acta Metall. 1980, 28, 455–463. [Google Scholar] [CrossRef]
- Lejček, P.; Hofmann, S. Grain boundary segregation diagrams of α-iron. Interface Sci. 1993, 1, 163–174. [Google Scholar] [CrossRef]
- Lejček, P.; Hofmann, S.; Janovec, J. Prediction of enthalpy and entropy of solute segregation at individual grain boundaries of α-iron and ferrite steels. Mater. Sci. Eng. A 2007, 462, 76–85. [Google Scholar] [CrossRef]
- Lejček, P. Grain Boundary Segregation in Metals; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- van der Laan, G.; Thole, B.T.; Sawatzky, G.A.; Goedkoop, J.B.; Fuggle, J.C.; Esteva, J.-M.; Karnatak, R.; Remeika, J.P.; Dabkowska, H.A. Experimental proof of magnetic X-ray dichroism. Phys. Rev. B 1986, 34, 6529–6531. [Google Scholar] [CrossRef]
- Van Acker, J.F.; Stadnik, Z.M.; Fuggle, J.C.; Hoekstra, H.J.W.H.; Buschow, K.H.J.; Stroink, G. Magnetic moments and X-ray photoelectron spectroscopy splittings in Fe 3s core levels of materials containing Fe. Phys. Rev. B 1988, 37, 6827–6834. [Google Scholar] [CrossRef]
- Thole, B.T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946. [Google Scholar] [CrossRef]
- Carra, P.; Thole, B.T.; Altarelli, M.; Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993, 70, 694–697. [Google Scholar] [CrossRef]
- Hébert, C.; Schattschneider, P. A proposal for dichroic experiments in the electron microscope. Ultramicroscopy 2003, 96, 463–468. [Google Scholar] [CrossRef]
- Schattschneider, P.; Rubino, S.; Hébert, C.; Rusz, J.; Kuneš, J.; Novák, P.; Carlino, E.; Fabrizioli, M.; Panaccione, G.; Rossi, G. Detection of magnetic circular dichroism using a transmission electron microscope. Nature 2006, 441, 486–488. [Google Scholar] [CrossRef]
- Schattschneider, P.; Hébert, C.; Rubino, S.; Stöger-Pollach, M.; Rusz, J.; Novák, P. Magnetic circular dichroism in EELS: Towards 10 nm resolution. Ultramicroscopy 2008, 108, 433–438. [Google Scholar] [CrossRef]
- Lidbaum, H.; Rusz, J.; Liebig, A.; Hjörvearsson, B.; Oppeneer, M.; Coronel, E.; Eriksson, O.; Leifer, K. Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. Phys. Rev. Lett. 2009, 102, 037201. [Google Scholar] [CrossRef]
- Muto, S.; Tatsumi, K.; Rusz, J. Parameter-free extraction of EMCD from an energy-filtered diffraction datacube using multivariate curve resolution. Ultramicroscopy 2013, 125, 89–96. [Google Scholar] [CrossRef]
- Muto, S.; Rusz, J.; Tatsumi, K.; Adam, R.; Arai, S.; Kocevski, V.; Oppeneer, P.M.; Burgler, D.E.; Schnerder, C.M. Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism. Nat. Commun. 2014, 5, 3138. [Google Scholar] [CrossRef]
- Geng, W.T.; Freeman, A.J.; Wu, R.; Geller, C.B.; Raynolds, J.E. Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a Σ5 nickel grain boundary. Phys. Rev. B 1999, 60, 7149–7155. [Google Scholar] [CrossRef]
- Tsurekawa, S.; Okamoto, K.; Kawahara, K.; Watanabe, T. The control of grain boundary segregation and segregation-induced brittleness in iron by the application of a magnetic field. J. Mater. Sci. 2005, 40, 895–901. [Google Scholar] [CrossRef]
- Ito, K.; Sawada, H.; Ogata, S. First-principles study on the grain boundary embrittlement of bcc-Fe by Mn segregation. Phys. Rev. Mater. 2019, 3, 013609. [Google Scholar] [CrossRef]
- McMahon, C.J. Intergranular fracture in steels. Mater. Sci. Eng. 1976, 25, 233–239. [Google Scholar] [CrossRef]
- Ozawa, T.; Ishida, Y. Mössbauer effect of 119mSn segregated at the grain boundary of iron. Scr. Metall. 1977, 11, 835–838. [Google Scholar] [CrossRef]
- Taheri, M.L.; Stach, E.A.; Arslan, L.; Crozier, P.A.; Kabius, B.C.; LaGrange, T.; Minor, A.W.; Takeda, S.; Tanese, M.; Wanger, J.B.; et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 2016, 170, 86–95. [Google Scholar] [CrossRef]
- Zhou, T.; Babu, R.P.; Hou, Z.; Hedström, P. On the role of transmission electron microscopy for precipitation analysis in metallic materials. Crit. Rev. Solid State Mater. 2022, 47, 388–414. [Google Scholar] [CrossRef]
- Sun, L.; Xu, T.; Zhang, Z. (Eds.) . In-Situ Transmission Electron Microscopy; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Hall, E.O. The deformation and ageing of mild steel: II characteristics of the Lüders deformation. Proc. Phys. Soc. Sec. B 1951, 64, 742–747. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Anderson, P.M.; Hirth, J.P.; Lothe, J. Theory of Dislocations, 3rd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Livingston, J.D.; Charmers, B. Multiple slip in bicrystal deformation. Acta Metall. 1957, 5, 322–327. [Google Scholar] [CrossRef]
- Grabski, M.W.; Korski, R. Grain boundaries as sinks for dislocations. Philos. Mag. 1970, 22, 707–715. [Google Scholar] [CrossRef]
- Pumphrey, P.H.; Gleiter, H. The annealing of dislocations in high-angle grain boundaries. Philos. Mag. 1974, 30, 593–602. [Google Scholar] [CrossRef]
- Pond, R.C.; Smith, D.A. On the absorption of dislocations by grain boundaries. Philos. Mag. 1977, 36, 353–366. [Google Scholar] [CrossRef]
- Shen, Z.; Wagoner, R.H.; Clark, W.A.T. Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr. Metall. 1986, 20, 921–926. [Google Scholar] [CrossRef]
- Shen, Z.; Wagoner, R.H.; Clark, W.A.T. Dislocation and grain boundary interactions in metals. Acta Metall. 1988, 36, 3231–3242. [Google Scholar] [CrossRef]
- Lee, T.C.; Robertson, I.M.; Birnbaum, H.K. An In Situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall. Trans. A 1990, 21, 2437–2447. [Google Scholar] [CrossRef]
- Luster, J.; Morris, M.A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships. Metall. Mater. Trans. A 1995, 26, 1745–1756. [Google Scholar] [CrossRef]
- Kacher, J.; Eftink, B.P.; Cui, B.; Robertson, I.M. Dislocation interactions with grain boundaries. Curr. Opin. Solid State Mater. Sci. 2014, 18, 227–243. [Google Scholar] [CrossRef]
- Wo, P.C.; Ngan, A.H.W. Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation. J. Mater. Res. 2004, 19, 189–201. [Google Scholar] [CrossRef]
- Wang, M.G.; Ngan, A.H.W. Indentation strain burst phenomenon induced by grain boundaries in niobium. J. Mater. Res. 2004, 19, 2478–2486. [Google Scholar] [CrossRef]
- Soer, W.A.; De Hosson, J.T.M. Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater. Lett. 2005, 59, 3192–3195. [Google Scholar] [CrossRef]
- Soer, W.A.; Aifantis, K.E.; De Hosson, J.T.M. Incipient plasticity during nanoindentation at grain boundaries in body-centerd cubic metals. Acta Mater. 2005, 53, 4665–4676. [Google Scholar] [CrossRef]
- Tsurekawa, S.; Chihara, Y.; Tashima, K.; Ii, S.; Lejček, P. Local plastic deformation in the vicinity of grain boundaries in Fe–3 mass% Si alloy bicrystals and tricrystal. J. Mater. Sci. 2014, 49, 4698–4704. [Google Scholar] [CrossRef]
- Aifantis, K.E.; Deng, H.; Shibata, H.; Tsurekawa, S.; Lejček, P.; Hackney, S.A. Interpreting slip transmission through mechanically induced interface energies: A Fe–3%Si case study. J. Mater. Sci. 2018, 54, 1831–1843. [Google Scholar] [CrossRef]
- Tokuda, Y.; Tsurekawa, S.; Molodov, D.A. Local mechanical properties in the vicinity of Σ3/[111] symmetric tilt grain boundary in aluminum bicrystal. Mater. Sci. Eng. A 2018, 716, 37–41. [Google Scholar] [CrossRef]
- Barrales-Mora, L.A.; Tokuda, Y.; Molodov, D.A.; Tsurekawa, S. On incipient plasticity in the vicinity of grain boundaries in aluminum bicrystals: Experimental and simulation nanoindentation study. Mater. Sci. Eng. A 2021, 828, 142100. [Google Scholar] [CrossRef]
- Brandenburg, J.E.; Seo, J.; Eto, K.; Molodov, D.A.; Tsurekawa, S. Influence of symmetrical <10-10> high-angle tilt grain boundaries on the local mechanical properties of magnesium bicrystals. Mater. Sci. Eng. A 2021, 826, 141913. [Google Scholar] [CrossRef]
- Ohmura, T.; Tsuzaki, K.; Yin, F. Nanoindentation-induced deformation behavior in the vicinity of single grain boundary of interstitial-free steel. Mater. Trans. 2005, 46, 2026–2029. [Google Scholar] [CrossRef]
- Ohmura, T.; Zhang, L.; Sekido, K.; Tsuzaki, K. Effects of lattice defects on indentation-induced plasticity initiation behavior in metals. J. Mater. Res. 2012, 27, 1742–1749. [Google Scholar] [CrossRef]
- Nakano, K.; Hayashi, K.; Takeda, K.; Ii, S.; Ohmura, T. Effect of Grain Boundary on the Plastic Deformation in Fe-C Alloys. In Proceedings of the 5th International Symposium of Steel Science (ISSS-2017), Kyoto, Japan, 13–16 November 2017; Li, S., Tsuchiyama, T., Miyamoto, G., Furuhara, T., Eds.; The Iron and Steel Institute of Japan: Tokyo, Japan, 2017; pp. 219–222. [Google Scholar]
- Araki, S.; Mashima, K.; Masumura, T.; Tsuchiyama, T.; Takaki, S.; Ohmura, T. Effect of grain boundary segregation of carbon on critical grain boundary strength of ferritic steel. Scr. Mater. 2019, 169, 38–41. [Google Scholar] [CrossRef]
- Endoh, K.; Ii, S.; Kimura, Y.; Sasaki, T.; Goto, S.; Yokota, T.; Ohmura, T. Effects of grain boundary geometry and boron addition on the local mechanical behavior of interstitial-free (IF) steels. Mater. Trans. 2021, 62, 1479–1488. [Google Scholar] [CrossRef]
- Nakano, K.; Takeda, K.; Ii, S.; Ohmura, T. Evaluation of grain boundary strength through nanoindentation technique. J. Jpn. Inst. Met. Mater. 2021, 85, 40–48. [Google Scholar] [CrossRef]
- Wakeda, M.; Zhang, Y.L.; Ii, S.; Ohmura, T. Multiscale analyses of the interaction between dislocation and Σ9 symmetric tilt grain boundaries in Fe–Si bicrystals by nanoindentation technique. Int. J. Plast. 2021, 145, 103047. [Google Scholar] [CrossRef]
- Saka, H.; Imura, T.; Yukawa, N.; Igarashi, I. Stress measurable tensile device for electron microscopic observation. J. Phys. Soc. Jpn. 1968, 25, 906. [Google Scholar] [CrossRef]
- Saka, H.; Imura, T. On the preparation of tensile test pieces for transmission electron microscopic observation. Jpn. J. Appl. Phys. 1969, 8, 406. [Google Scholar] [CrossRef]
- Minor, A.M.; Asif, S.A.S.; Shan, Z.; Stach, E.A.; Cyrankowski, E.; Wyrobek, T.J.; Warren, O.L. A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 2006, 5, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.W.; Mishra, R.K.; Syed Asif, S.A.; Warren, O.L.; Minor, A.M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 2008, 7, 115–119. [Google Scholar] [CrossRef]
- Caillard, D. Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature. Acta Mater. 2010, 58, 3493–3503. [Google Scholar] [CrossRef]
- Caillard, D. Kinetics of dislocations in pure Fe. Part II. In situ straining experiments at low temperature. Acta Mater. 2010, 58, 3504–3515. [Google Scholar] [CrossRef]
- Zhang, L.; Ohmura, T.; Sekido, K.; Nakajima, K.; Hara, T.; Tsuzaki, K. Direct observation of plastic deformation in iron–3% silicon single crystal by in situ nanoindentation in transmission electron microscopy. Scr. Mater. 2011, 64, 919–922. [Google Scholar] [CrossRef]
- Kiener, D.; Hosemann, P.; Maloy, S.A.; Minor, A.M. In situ nanocompression testing of irradiated copper. Nat. Mater. 2011, 10, 608–613. [Google Scholar] [CrossRef]
- Zhang, L.; Ohmura, T.; Sekido, K.; Hara, T.; Nakajima, K.; Tsuzaki, K. Dislocation character transition and related mechanical response in a body-centered cubic single crystal. Scr. Mater. 2012, 67, 388–391. [Google Scholar] [CrossRef]
- Mompiou, F.; Legros, M. Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films. Scr. Mater. 2015, 99, 5–8. [Google Scholar] [CrossRef]
- Zhang, L.; Sekido, N.; Ohmura, T. Real time correlation between flow stress and dislocation density in steel during deformation. Mater. Sci. Eng. A 2014, 61, 188–193. [Google Scholar] [CrossRef]
- Miao, B.; Kondo, S.; Tochigi, E.; Wei, J.; Feng, B.; Shibata, N.; Ikuhara, Y. The core structure of 60° mixed basal dislocation in alumina (α-Al2O3) introduced by in situ TEM nanoindentation. Scr. Mater. 2019, 163, 157–162. [Google Scholar] [CrossRef]
- Ii, S.; Enami, T.; Ohmura, T.; Tsurekawa, S. Direct characterization of the relation between the mechanical response and microstructure evolution in aluminum by transmission electron microscopy in situ straining. Materials 2021, 14, 1431. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, S.; Tomota, Y.; Ii, S.; Tsuji, N.; Ohmura, T. Real time correlation between flow stress and dislocation density in steel during deformation. Acta Mater. 2021, 206, 116621. [Google Scholar] [CrossRef]
- Tochigi, E.; Miao, B.; Nakamura, A.; Shibata, N.; Ikuhara, Y. Atomic-scale mechanism of rhombohedral twinning in sapphire. Acta Mater. 2021, 216, 117137. [Google Scholar] [CrossRef]
- Li, H.; Ii, S.; Ohmura, T.; Tsuji, N. Direct observation of grain boundary formation in bcc iron through TEM in situ compression test. Scr. Mater. 2022, 207, 114275. [Google Scholar] [CrossRef]
- Ohmura, T.; Minor, A.M.; Stach, E.A.; Morris, J.M. Dislocation–grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. J. Mater. Res. 2004, 19, 3626–3632. [Google Scholar] [CrossRef]
- Soer, W.A.; De Hosson, J.T.M.; Minor, A.M.; Morris, J.M.; Stach, E.A. Effects of solute Mg on grain boundary and dislocation dynamics during nanoindenation of Al-Mg thin films. Acta Mater. 2004, 52, 5783–5790. [Google Scholar] [CrossRef]
- Li, L.L.; An, H.; Imrich, P.J.; Zhang, P.; Zhang, Z.J.; Dehm, G.; Zhang, Z.F. Microcompression and cyclic deformation behaviors of coaxial copper bicrystals with a single twin boundary. Scr. Mater. 2013, 69, 199–202. [Google Scholar] [CrossRef]
- Guo, Y.; Britton, T.B.; Wilkindon, A.J. Slip band–grain boundary interactions in commercial-purity titanium. Acta Mater. 2014, 76, 1–12. [Google Scholar] [CrossRef]
- Imrich, P.J.; Kirchlechner, C.; Kiener, D.; Dehm, G. Internal and external stresses: In situ TEM compression of Cu bicrystals containing a twin boundary. Scr. Mater. 2015, 100, 94–97. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Jeon, J.B.; Kim, Y.J.; Lee, B.J.; Oh, S.H.; Han, S.M. Effect of a high angle grain boundary on deformation behavior of Al nanopillars. Scr. Mater. 2015, 107, 5–9. [Google Scholar] [CrossRef]
- Imrich, P.J.; Kirchlechner, C.; Kiener, D.; Dehm, G. In situ TEM microcompression of single and bicrystalline samples: Insights and limitations. J. Miner. Met. Mater. Soc. 2015, 67, 1704–1712. [Google Scholar] [CrossRef]
- Kheradmand, N.; Knorr, A.F.; Marx, M.; Deng, Y. Microscopic incompatibility controlling plastic deformation of bicrystals. Acta Mater. 2016, 106, 219–228. [Google Scholar] [CrossRef]
- Malyar, N.V.; Micha, J.S.; Dehm, G.; Kirchlechner, C. Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Mater. 2017, 129, 91–97. [Google Scholar] [CrossRef]
- Malyar, N.V.; Micha, J.S.; Dehm, G.; Kirchlechner, C. Size effect in bi-crystalline micropillars with a penetrable high angle grain boundary. Acta Mater. 2017, 129, 312–320. [Google Scholar] [CrossRef]
- Zhang, Z.; Waheed, S.; Balint, D.S.; Dunne, F.P.E. Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity. Int. J. Plast. 2018, 104, 23–38. [Google Scholar] [CrossRef]
- Liebig, J.P.; Krauß, S.; Göken, M.; Merle, B. Influence of stacking fault energy and dislocation character on slip transfer at coherent twin boundaries studied by micropillar compression. Acta Mater. 2018, 154, 261–272. [Google Scholar] [CrossRef]
- Weaver, J.S.; Li, N.; Mara, N.A.; Jones, D.R.; Cho, H.; Bronkhorst, C.A.; Fensin, S.J.; Gray, G.T. Slip transmission of high angle grain boundaries in body-centered cubic metals: Micropillar compression of pure Ta single and bi-crystals. Acta Mater. 2018, 156, 356–368. [Google Scholar] [CrossRef]
- Ii, S.; Enami, T.; Ohmura, T.; Tsurekawa, S. Direct measurement of shear stress for dislocation transferring across {111} Σ3 grain boundary in aluminum bicrystal via in situ straining TEM. Scr. Mater. 2022, 221, 114963. [Google Scholar] [CrossRef]
- Kiani, M.T.; Gan, L.T.; Traylor, R.; Yang, R.; Barr, C.M.; Hattar, K.; Fan, J.A.; Gu, X.W. In Situ TEM tensile testing of bicrystals with tailored misorientation angles. Acta Mater. 2022, 224, 117505. [Google Scholar] [CrossRef]
- Ikuhara, Y.; Suzuki, T.; Kubo, Y. Transmission electron microscopy in situ observation of crack propagation in sintered alumina. Philos. Mag. 1992, 66, 323–327. [Google Scholar] [CrossRef]
- Ii, S.; Iwamoto, C.; Matsunaga, K.; Yamamoto, T.; Yoshiya, M.; Ikuhara, Y. Direct observation of intergranular cracks in sintered silicon nitride. Philos. Mag. 2004, 84, 2767–2775. [Google Scholar] [CrossRef]
- Becher, P.F.; Painter, G.S.; Lance, M.J.; Ii, S.; Ikuhara, Y. Direct observations of debonding of reinforcing grains in silicon nitride ceramics sintered with yttria plus alumina additives. J. Am. Ceram. Soc. 2005, 88, 1222–1226. [Google Scholar] [CrossRef]
- Kondo, S.; Ishihara, A.; Tochigi, E.; Shibata, N.; Ikuhara, Y. Direct observation of atomic-scale fracture path within ceramic grain boundary core. Nat. Commum. 2019, 10, 2112. [Google Scholar] [CrossRef] [PubMed]
- Maaß, R.; Derlet, P.M. Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Mater. 2018, 143, 338–363. [Google Scholar] [CrossRef]
- Kamikawa, N.; Huang, X.; Tsuji, N.; Hansen, N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 2009, 57, 4198–4208. [Google Scholar] [CrossRef]
- Wyrzykowski, J.W.; Grabski, M.W. The Hall–Petch relation in aluminium and its dependence on the grain boundary structure. Philos. Mag. A 1986, 53, 505–520. [Google Scholar] [CrossRef]
- Rauch, E.F.; Portillo, J.; Nicolopoulos, S.; Bultreys, D.; Rouvimov, S.; Moeck, P. Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z. Kristallogr. 2010, 225, 103–109. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. J. Miner. Met. Mater. Soc. 2006, 58, 33–39. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hansen, N. High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 1997, 45, 3871–3886. [Google Scholar] [CrossRef]
- Hanse, N.; Jensen, D.J. Development of microstructure in FCC metals during cold work. Philos. Trans. A Math. Phys. Eng. Sci. 1997, 357, 1447–1469. [Google Scholar] [CrossRef]
- Hansen, N.; Mehl, R.F.; Medalist, A. New discoveries in deformed metals. Metall. Mater. Trans. A 2001, 32, 2917–2935. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hansen, N.; Bammann, D.J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr. Mater. 2003, 48, 147–153. [Google Scholar] [CrossRef]
- Tsuji, N.; Gholizadeh, R.; Ueji, R.; Kamikawa, N.; Zhao, L.; Tian, Y.; Bai, Y.; Shibata, A. Formation mechanism of ultrafine grained microstructures: Various possibilities for fabricating bulk nanostructured metals and alloys. Mater. Trans. 2019, 60, 1518–1532. [Google Scholar] [CrossRef]
- Wang, L.; Kong, D.; Zhang, Y.; Xiao, L.; Lu, Y.; Chen, Z.; Zhang, Z.; Zou, J.; Zhu, T.; Han, X. Mechanically driven grain boundary formation in nickel nanowires. ACS Nano 2017, 11, 12500–12508. [Google Scholar] [CrossRef] [PubMed]
- Kobler, A.; Kashiwar, A.; Hahn, H.; Kübel, C. Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy 2013, 128, 68–81. [Google Scholar] [CrossRef]
- Kobler, A.; Kübel, C. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM. Ultramicroscopy 2017, 173, 84–94. [Google Scholar] [CrossRef]
- Kashiwar, A.; Hahn, H.; Kübel, C. In situ TEM observation of cooperative grain rotations and the Bauschinger effect in nanocrystalline palladium. Nanomaterials 2021, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Pennycook, S.J.; Nellist, P.D. Scanning Transmission Electron Microscopy Imaging and Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Morishita, S.; Ishikawa, R.; Kohno, Y.; Sawada, H.; Shibata, N.; Ikuhara, Y. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector. Microscopy 2018, 67, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, K.; Asaka, T.; Nagai, T.; Saito, M.; Matsui, Y.; Ishizuka, K. Element-selective imaging of atomic comlumns in a crystal using STEM and EELS. Nature 2007, 450, 702–704. [Google Scholar] [CrossRef]
- Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; Van Dyck, D.; Van Tandeloo, G. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 2009, 109, 1236–1244. [Google Scholar] [CrossRef]
- Molina, S.I.; Sales, D.L.; Galindo, P.L.; Fuster, D.; González, Y.; Alén, B.; González, L.; Varela, M.; Pennycook, S.J. Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 2009, 109, 172–176. [Google Scholar] [CrossRef]
- Bjørge, R.; Dwyer, C.; Weyland, M.; Nakashima, P.N.H.; Etheridge, J.; Holmestad, R. Quantitative HAADF STEM study of β-like precipitates in an Al-Mg-Ge alloy. J. Phys. Conf. Ser. 2011, 371, 012015. [Google Scholar] [CrossRef]
- Martinez, G.T.; Rosenauer, A.; De Backer, A.; Verbeeck, J.; Van Aert, S. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 2014, 137, 12–19. [Google Scholar] [CrossRef]
- Firoozabadi, S.; Kükelhan, P.; Beyer, A.; Lehr, J.; Heimes, D.; Volz, K. Quantitative composition determination by ADF-STEM at a low-angular regime: A combination of EFSTEM and 4DSTEM. Ultramicroscopy 2022, 240, 113550. [Google Scholar] [CrossRef]
- Buranova, Y.; Rösner, H.; Divinski, S.V.; Imlau, R.; Wilde, G. Quantitative measurements of grain boundary excess volume from HAADF-STEM micrographs. Acta Mater. 2016, 106, 367–373. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Vermaut, P.; Malarria, J.; Portier, R. Study of atomic displacement fields in shape memory alloys by high-resolution electron microscopy. Mater. Sci. Eng. A 1999, 273–275, 266–270. [Google Scholar] [CrossRef]
- Galindo, P.L.; Kret, S.; Sanchez, A.M.; Laval, J.-Y.; Yáñez, A.; Pizarro, J.; Guerrero, E.; Ben, T.; Molina, S.I. The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 2007, 107, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Sennour, M.; Lartigue-Korinek, S.; Champion, Y.; Hÿtch, M.J. Local strain analysis in twin boundaries in ultrafine grained copper. J. Mater. Sci. 2008, 43, 3806–3811. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Putaux, J.L.; Thibault, J. Stress and strain around grain-boundary dislocations measured by high-resolution electron microscopy. Philos. Mag. 2006, 86, 4641–4656. [Google Scholar] [CrossRef]
- Zhao, C.W.; Xing, Y.M.; Bai, P.C.; Hou, J.F.; Dai, X.J. Quantitative measurement of deformation field around low-angle grain boundaries by electron microscopy. Phys. B 2008, 403, 1838–1842. [Google Scholar] [CrossRef]
- Couillard, M.; Radtke, G.; Botton, G.A. Strain fields around dislocation arrays in a Σ9 silicon bicrystal measured by scanning transmission electron microscopy. Philos. Mag. 2013, 93, 1250–1267. [Google Scholar] [CrossRef]
- Hüe, F.; Hÿtch, M.; Bender, H.; Houdellier, F.; Claverie, A. Direct mapping of strain in a strained silicon transistor by high-resolution electron microscopy. Phys. Rev. Lett. 2008, 100, 156602. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, K.; Haugan, H.J.; Brown, G.J.; Eyink, K.G. Quantitative analysis of interfacial strain in InAs/GaSb superlattices by aberration-corrected HRTEM and HAADF-STEM. Ultramicroscopy 2013, 127, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rivera, J.L.; Rivera, J.C.; Koch, C.T.; Özdöl, V.B.; Martínez-Sánchez, R. Study of coherence strain of GP II zones in an aged aluminum composite. J. Alloys Compd. 2012, 536, S159–S164. [Google Scholar] [CrossRef]
- Hernández-Rivera, J.L.; Cruz Rivera, J.J.; Koch, C.T.; Özdöl, V.B.; Martínez-Sánchez, R. Evaluation of strain caused by coherent precipitates in an Al alloy using TEM techniques. Mater. Char. 2012, 73, 61–67. [Google Scholar] [CrossRef]
- Hou, X.; Li, J.J.; Liu, F.; Yan, L.; Bai, P. Coherent strain of Guinier-Preston II zone in an Al-Zn-Mg-Cu alloy. Micron 2019, 124, 102711. [Google Scholar] [CrossRef]
- Hou, X.; Ma, G.; Bai, P.; Lang, F.; Zhao, X.; Liu, F.; Xing, Y. Investigation of the coherent strain evolution of the η’ phase in Al–Zn–Mg–Cu alloys via scanning transmission electron microscopy. J. Alloys Compd. 2021, 856, 158111. [Google Scholar] [CrossRef]
- Tirry, W.; Schryvers, D. Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain. Nat. Mater. 2009, 8, 752–757. [Google Scholar] [CrossRef]
- Shibata, N.; Kondo, Y.; Findley, S.D.; Sawada, H.; Kondo, Y.; Ikuhara, Y. New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron Microsc. 2010, 59, 473–479. [Google Scholar] [CrossRef]
- Shibata, N.; Findley, S.D.; Kohno, Y.; Sawada, H.; Kondo, Y.; Ikuhara, Y. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 2012, 8, 611–615. [Google Scholar] [CrossRef]
- Shibata, N. Atomic-resolution differential phase contrast electron microscopy. J. Ceram. Soc. Jpn. 2019, 127, 708–714. [Google Scholar] [CrossRef]
- Kohno, Y.; Seki, T.; Findley, S.D.; Ikuhara, Y.; Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 2022, 602, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Shibata, N.; Findley, S.D.; Sasaki, H.; Matsumoto, T.; Sawada, H.; Kohno, Y.; Otomo, S.; Minato, R.; Ikuhara, Y. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy. Sci. Rep. 2015, 5, 10040. [Google Scholar] [CrossRef] [PubMed]
- Toyama, S.; Seki, T.; Kanitani, Y.; Kudo, Y.; Tomiya, S.; Ikuhara, Y.; Shibata, N. Quantitative electric field mapping in semiconductor heterostructures via tilt-scan averaged DPC STEM. Ultramicroscopy 2022, 238, 113538. [Google Scholar] [CrossRef]
- Toyama, S.; Seki, T.; Kanitani, Y.; Kudo, Y.; Tomiya, S.; Ikuhara, Y.; Shibata, N. Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces. Nat. Nanotechnol. 2023, 18, 521–528. [Google Scholar] [CrossRef]
- Oleshko, V.P.; Howe, J.M. In situ determination and imaging of physical properties of metastable and equilibrium precipitates using valence electron energy-loss spectroscopy and energy-filtering transmission electron microscopy. J. Appl. Phys. 2017, 101, 054308. [Google Scholar] [CrossRef]
- Nandi, P.; Howe, J.M. Determining the volume expansion at grain boundaries using extended energy-loss fine structure analysis. Microsc. Microanal. 2019, 25, 1130–1138. [Google Scholar] [CrossRef]
- Nandi, P.; Sang, X.; Hoglund, E.R.; Unocic, R.R.; Molodov, D.A.; Howe, J.M. Nanoscale mapping of the electron density at Al grain boundaries and correlation with grain-boundary energy. Phys. Rev. Mater. 2019, 3, 053805. [Google Scholar] [CrossRef]
- Nandi, P.; Hoglund, E.R.; Howe, J.M. Observation of grain boundary plasmon and associated deconvolution techniques for low-loss electron energy-loss (EEL) spectra acquired from grain boundaries. Ultramicroscopy 2022, 234, 113478. [Google Scholar] [CrossRef] [PubMed]
- Kohyama, M.; Tanaka, S.; Shiihara, Y. Ab initio local-energy and local-stress calculations for materials science and engineering. Mater. Trans. 2021, 62, 1–15. [Google Scholar] [CrossRef]
- Nelayah, J.; Kociak, M.; Stephan, O.; Garcia de Abajo, F.J.; Tence, M.; Henradr, L.; Taverra, D.; Pastoriza-Santos, I.; Liz-Marzan, L.M.; Colliex, C. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 2007, 3, 348–353. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Jin, Q.; Zhuang, K.; Choi, J.K.; Nxumalo, J. Band gap measurement by nano-beam STEM with small off-axis angle transmission electron energy loss spectroscopy (TEELS). Ultramicroscopy 2020, 220, 113164. [Google Scholar] [CrossRef]
- Krivanek, O.L.; Dellby, N.; Hachtel, J.A.; Idrobo, J.-C.; Hotz, M.T.; Plotkin-Swing, B.; Bacon, N.J.; Bleloch, A.L.; Corbin, G.J.; Hoffman, M.V.; et al. Progress in ultrahigh energy resolution EELS. Ultramicroscopy 2019, 203, 60–67. [Google Scholar] [CrossRef]
- Hoglund, E.R.; Bao, D.-L.; O’Hara, A.; Makarem, S.; Oiontkowski, Z.T.; Matson, J.R.; Yadav, A.K.; Haislmaier, R.C.; Engel-Herbert, R.; Ihilefeld, J.F.; et al. Emergent interface vibrational structure of oxide superlattices. Nature 2022, 601, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Hoglund, E.R.; Bao, D.-L.; O’Hara, A.; Pfeiler, T.M.; Hoque, M.S.B.; Makarem, S.; Howe, J.M.; Pantelides, S.T.; Hopkins, P.E.; Hachtel, J.A. Direct visualization of localized vibrations at complex grain boundaries. Adv. Mater. 2023, 35, 2208920. [Google Scholar] [CrossRef]
- Raabe, D.; Herbig, M.; Sndlöbes, S.; Li, Y.; Tytko, D.; Kuzmina, M.; Ponge, D.; Choi, P.-P. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 2014, 18, 253–261. [Google Scholar] [CrossRef]
- Ding, R.; Yao, Y.; Sun, B.; Liu, G.; He, J.; Li, T.; Wan, X.; Dai, Z.; Ponge, D.; Raabe, D.; et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Sci. Adv. 2020, 6, eaay1430. [Google Scholar] [CrossRef]
- Zhao, H.; Huber, L.; Lu, W.; Peter, N.J.; An, D.; De Geuser, F.; Dehm, G.; Ponge, D.; Neugebauer, J.; Gault, B.; et al. Interplay of chemistry and faceting at grain boundaries in a model Al alloy. Phys. Rev. Lett. 2020, 124, 106102. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chakraborty, P.; Ponge, D.; Hickel, T.; Sun, B.; Wu, C.-H.; Gault, B.; Raabe, D. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022, 602, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sun, B.; Schökel, A.; Song, W.; Ponge, D.; Raabe, D.; Bleck, W. Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels. Acta Mater. 2020, 200, 389–403. [Google Scholar] [CrossRef]
- Larson, D.J.; Prosa, T.J.; Ulfig, R.M.; Geiser, B.P.; Kelly, T.F. Local Electrode Atom Probe Tomography: A User’s Guide; Springer: New York, NY, USA, 2013. [Google Scholar]
- Millar, M.K.; Forbes, R.G. Atom-Probe Tomography; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Lefebvre-Ulrikson, W.; Vurpullot, F.; Sauvage, X. (Eds.) Atom Probe Tomography; Academic Press: Cambridge, MA, USA, 2016; Available online: https://www.sciencedirect.com/science/book/9780128046470 (accessed on 12 November 2023).
- Tochigi, E.; Sato, T.; Shibata, N.; Fujita, H.; Ikuhara, Y. Atomic-scale analysis of mechanical response of SrTiO3 by MEMS-based in situ STEM mechanical testing. Microsc. Microanal. 2020, 26, 1838–1840. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ii, S. Quantitative Characterization by Transmission Electron Microscopy and Its Application to Interfacial Phenomena in Crystalline Materials. Materials 2024, 17, 578. https://doi.org/10.3390/ma17030578
Ii S. Quantitative Characterization by Transmission Electron Microscopy and Its Application to Interfacial Phenomena in Crystalline Materials. Materials. 2024; 17(3):578. https://doi.org/10.3390/ma17030578
Chicago/Turabian StyleIi, Seiichiro. 2024. "Quantitative Characterization by Transmission Electron Microscopy and Its Application to Interfacial Phenomena in Crystalline Materials" Materials 17, no. 3: 578. https://doi.org/10.3390/ma17030578
APA StyleIi, S. (2024). Quantitative Characterization by Transmission Electron Microscopy and Its Application to Interfacial Phenomena in Crystalline Materials. Materials, 17(3), 578. https://doi.org/10.3390/ma17030578