Influence of Reclaimed Water on the Visual Quality of Automotive Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Washing Water
2.2. Experimental Installation
2.3. Measuring Equipment
3. Results
3.1. Long-Term Washing
3.2. Scratch Resistance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuan, W.-H.; Hu, C.-Y.; Ke, L.-W.; Wu, J.-M. A Review of On-Site Carwash Wastewater Treatment. Sustainability 2022, 14, 5764. [Google Scholar] [CrossRef]
- Moazzem, S.; Wills, J.; Fan, L.; Roddick, F.; Jegatheesan, V. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse. Environ. Sci. Pollut. Res. 2018, 25, 8654–8668. [Google Scholar] [CrossRef] [PubMed]
- Monney, I.; Donkor, E.A.; Buamah, R. Clean vehicles, polluted waters: Empirical estimates of water consumption and pollution loads of the carwash industry. Heliyon 2020, 6, e03952. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, A.N.; Gikas, P. Water reuse: Overview of current practices and trends in the world with emphasis on EU states. Water Util. J. 2014, 8, 67–78. [Google Scholar]
- Elgaali, E.; Akram, M. Recycling and Reuse of Wastewater Generated in Car-Washing Facilities. Adv. Sci. Technol. Eng. Syst. J. 2021, 6, 521–525. [Google Scholar] [CrossRef]
- Mujumdar, M.M.; Rajagolkar, S.P.; Jadhav, P. Treatment of vehicle washing waste water for maximum reuse of treated water and reduce fresh water consumption. Int. J. Recent Res. Asp. 2020, 7, 1–5. Available online: https://www.academia.edu/43768187 (accessed on 17 September 2024).
- Hu, C.-Y.; Kuan, W.-H.; Ke, L.-W.; Wu, J.-M. A study of car wash wastewater treatment by cyclo-flow filtration. Water 2022, 14, 1476. [Google Scholar] [CrossRef]
- Zaneti, R.; Etchepare, R.; Rubio, J. Car wash wastewater reclamation. Full-scale application and upcoming features. Resour. Conserv. Recycl. 2011, 55, 953–959. [Google Scholar] [CrossRef]
- Uçar, D. Membrane processes for the reuse of car washing wastewater. J. Water Reuse Desalin. 2018, 8, 169–175. [Google Scholar] [CrossRef]
- Li, T.; Xue-Jun, T.; Fu-Yi, C.; Qi, Z.; Jun, Y. Reuse of carwash wastewater with hollow fiber membrane aided by enhanced coagulation and activated carbon treatments. Water Sci. Technol. 2007, 56, 111–118. [Google Scholar] [CrossRef]
- Pinto, A.C.S.; de Barros Grossi, L.; de Melo, R.A.C.; de Assis, T.M.; Ribeiro, V.M.; Amaral, M.C.S.; de Souza Figueiredo, K.C. Carwash Wastewater Treatment by Micro and Ultrafiltration Membranes: Effects of Geometry, Pore Size, Pressure Difference and Feed Flow Rate in Transport Properties. J. Water Process Eng. 2017, 17, 143–148. [Google Scholar] [CrossRef]
- Veit, M.T.; Novais, Í.G.V.; Juchen, P.T.; Palácio, S.M.; Da Cunha Gonçalves, G.; Zanette, J.C. Automotive Wash Effluent Treatment Using Combined Process of Coagulation/Flocculation/Sedimentation–Adsorption. Water Air Soil Pollut. 2020, 231, 494. [Google Scholar] [CrossRef]
- Fayed, M.; Shewitah, M.A.; Dupont, R.R.; Fayed, M.; Badr, M.M. Treatability Study of Car Wash Wastewater Using Upgraded Physical Technique with Sustainable Flocculant. Sustainability 2023, 15, 8581. [Google Scholar] [CrossRef]
- El-Ashtoukhy, E.-S.Z.; Amin, N.K.; Fouad, Y.O. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique. Environ. Monit. Assess. 2015, 187, 628. [Google Scholar] [CrossRef] [PubMed]
- Gönder, Z.B.; Balcıoğlu, G.; Vergili, I.; Kaya, Y. Electrochemical treatment of carwash wastewater using Fe and Al electrode: Techno-economic analysis and sludge characterization. J. Environ. Manag. 2017, 200, 380–390. [Google Scholar] [CrossRef]
- Do, K.-U.; Kim, J.-H.; Chu, X.-Q. Sludge Characteristics and Performance of a Membrane Bioreactor for Treating Oily Wastewater from a Car Wash Service Station. Desalin. Water Treat. 2018, 120, 166–172. [Google Scholar] [CrossRef]
- Boluarte, I.A.R.; Andersen, M.; Pramanik, B.K.; Chang, C.-Y.; Bagshaw, S.; Farago, L.; Jegatheesan, V.; Shu, L. Reuse of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes. Int. Biodeterior. Biodegrad. 2016, 113, 44–48. [Google Scholar] [CrossRef]
- Woźniak, P.; Dubicki, M.; Gryta, M. Microbiological Hazard Analysis of Car Wash Wastewater. Pol. J. Environ. Stud. 2023, 32, 3871–3882. [Google Scholar] [CrossRef]
- Tomczak, W.; Woźniak, P.; Gryta, M.; Grzechulska-Damszel, J.; Daniluk, M. Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study. Membranes 2024, 14, 159. [Google Scholar] [CrossRef]
- Woźniak, P.; Gryta, M. Application of Polymeric Tubular Ultrafiltration Membranes for Separation of Car Wash Wastewater. Membranes 2024, 14, 210. [Google Scholar] [CrossRef]
- Kotnarowska, D. The Influence of Battery Acid on the Destruction of Acrylic Coatings of Car Bodies. Coatings 2021, 11, 967. [Google Scholar] [CrossRef]
- Dahatonde, B.; Kadam, M.; Gupta, S. Review: Degradation of automotive clear coat caused by bird droppings. Paintindia 2020, 70, 78–90. [Google Scholar]
- Zaneti, R.N.; Etchepare, R.; Rubio, J. Car Wash Wastewater Treatment and Water Reuse—A Case Study. Water Sci. Technol. 2013, 67, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Seubert, C.; Nietering, K.; Nichols, M.; Wykoff, R.; Bollin, S. An Overview of the Scratch Resistance of Automotive Coatings: Exterior Clearcoats and Polycarbonate Hardcoats. Coatings 2012, 2, 221–234. [Google Scholar] [CrossRef]
- Sawyer-Beaulieu, S.; Tam, E.; Hussein, A. Measuring Corrosion on Vehicles, in Real-Time, Using Digital Imaging and Analysis Techniques. Materials 2022, 15, 3053. [Google Scholar] [CrossRef]
- Kotnarowska, D.; Wojtyniak, M. Influence of Ageing on Mechanical Properties of Epoxy Coatings. Sol. St. Phen. 2009, 147–149, 825–830. [Google Scholar] [CrossRef]
- Gruber, D.P.; Buder-Stroisznigg, M.; Wallner, G.; Strauss, B.; Jandel, L.; Lang, R.W. A novel methodology for the evaluation of distinctness of image of glossy surfaces. Prog. Org. Coat. 2008, 63, 377–381. [Google Scholar] [CrossRef]
- Perrin, F.X.; Irigoyen, M.; Aragon, E.; Vernet, J.L. Evaluation of accelerated weathering tests for three paint systems: A comparative study of their aging behaviour. Polym. Degrad. Stab. 2001, 72, 115–124. [Google Scholar] [CrossRef]
- The Rhopoint IQ. Available online: https://www.rhopointamericas.com/download/rhopoint-iq-goniophotometer-datasheet-english/ (accessed on 17 September 2024).
- Redford, J.; Mullany, B. Classification of Visual Smoothness Standards Using Multi-Scale Areal Texture Parameters and Low-Magnification Coherence Scanning Interferometry. Materials 2024, 17, 1653. [Google Scholar] [CrossRef]
- Frankhuizen, N. Measuring Gloss? Paint Coat. Ind. 2015, 31, 70–73. [Google Scholar]
- Yari, H.; Moradian, S.; Tahmasebi, N. The weathering performance of acrylic melamine automotive clearcoats containing hydrophobic nanosilica. J. Coat. Technol. Res. 2014, 11, 351–360. [Google Scholar] [CrossRef]
- Edited by Streitberger, H.-J.; Dössel, K.-F. Automotive Paints and Coatings, 2nd ed.; WILEY-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2008. [Google Scholar]
- Tomczak, W.; Gryta, M. The Application of Polyethersulfone Ultrafiltration Membranes for Separation of Car Wash Wastewaters: Experiments and Modelling. Membranes 2023, 13, 321. [Google Scholar] [CrossRef] [PubMed]
Parameter | Permeate 50% | Permeate 75% | T. Active Green 1 | Wastewater 2 |
---|---|---|---|---|
COD [mg/L] | 535 ± 2.5 | 565 ± 0.5 | 2298 ± 13 | 1018 ± 10 |
BOD [mg/L] | 237 ± 2 | 243 ± 2 | 690 ± 1 | 369 ± 1 |
total N [mg/L] | 6.64 ± 0.02 | 8.27 ± 0.03 | 8.48 ± 0.02 | 14.4 ± 0.04 |
total P [mg/L] | 5.26 ± 0.1 | 6.13 ± 0.07 | 0 | 12.5 ± 0.09 |
anionic [mg/L] | 75.7 ± 0.7 | 79.6 ± 0.2 | 691 ± 11 | 135 ± 10 |
nonionic [mg/L] | 3.46 ± 0.1 | 4.17 ± 0.06 | 30 ± 1.6 | 14.3 ± 1.6 |
pH [-] | 8.5 ± 0.1 | 8.6 ± 0.1 | 8.7 ± 0.1 | 8.6 ± 0.1 |
Sample | Gloss 20° | Gloss 60° | Gloss 85° | RIQ | Log Haze | Rspec |
---|---|---|---|---|---|---|
R#1 | 71.8 ± 12.2 | 86.3 ± 1.6 | 96.6 ± 2.8 | 57.8 ± 13.4 | 48.7 ± 5.8 | 36.5 ± 7.8 |
8d–T.A.G. 1 | 65.9 ± 3.9 | 82.5 ± 0.4 | 96.8 ± 0.3 | 54.3 ± 5.4 | 51.5 ± 3.8 | 31.3 ± 3.1 |
R#2 | 66.2 ± 2.5 | 82.4 ± 1.6 | 88.8 ± 7.3 | 55.9 ± 5.3 | 47.3 ± 7.6 | 32.7 ± 2.3 |
8d–P.50% 2 | 64.0 ± 8.3 | 82.6 ± 1.3 | 87.9 ± 1.9 | 51.8 ± 8.5 | 42.9 ± 2.9 | 30.8 ± 4.7 |
R#3 | 74.1 ± 0.7 | 87.1 ± 0.3 | 96.2 ± 0.4 | 58.9 ± 6.6 | 49.0 ± 2.9 | 38.2 ± 3.8 |
8d-P.75% 3 | 69.6 ± 3.3 | 82.1 ± 1.5 | 96.7 ± 0.5 | 60.1 ± 5.5 | 60.8 ± 4.0 | 36.2 ± 3.4 |
R#4 | 70.1 ± 1.4 | 83.8 ± 0.7 | 96.3 ± 0.4 | 49.1 ± 3.5 | 69.7 ± 7.4 | 30.6 ± 1.4 |
8d-scratch | 55.7 ± 6.4 | 75.9 ± 2.2 | 95.8 ± 0.5 | 49.7 ± 4.8 | 79.5 ± 12.6 | 26.1 ± 3.5 |
R#5 | 74.0 ± 2.3 | 87.2 ± 0.9 | 96.2 ± 2.5 | 58.9 ± 3.9 | 49.0 ± 3.5 | 38.2 ± 2.6 |
8d–scratch | 60.4 ± 2.6 | 79.9 ± 1.2 | 97.1 ± 0.5 | 62.9 ± 7.0 | 74.2 ± 7.7 | 33.6 ± 3.6 |
R#6 | 64.3 ± 3.6 | 84.0 ± 1.4 | 95.8 ± 0.4 | 55.8 ± 3.6 | 77.0 ± 6.1 | 31.7 ± 2.1 |
only scratch 4 | 63.1 ± 6.7 | 79.4 ± 2.4 | 96.4 ± 0.6 | 52.4 ± 6.4 | 79.4 ± 9.8 | 29.4 ± 3.4 |
W#1 | 78.4 ± 1.4 | 93.1 ± 0.9 | 96.2 ± 0.4 | 44.6 ± 4.3 | 48.8 ± 4.8 | 32.0 ± 1.9 |
8d–T.A.G. | 81.3 ± 2.1 | 91.6 ± 1.0 | 97.5 ± 0.6 | 44.5 ± 6.6 | 46.5 ± 4.7 | 33.1 ± 2.8 |
W#2 | 77.8 ± 4.6 | 85.7 ± 1.9 | 93.6 ± 0.5 | 45.9 ± 6.2 | 64.9 ± 8.6 | 27.9 ± 1.4 |
8d–P.50% | 81.6 ± 1.6 | 94.1 ± 0.4 | 96.8 ± 0.4 | 44.4 ± 4.2 | 49.5 ± 6.1 | 33.4 ± 2.6 |
W#3 | 82.3 ± 0.8 | 93.1 ± 0.5 | 96.2 ± 0.7 | 45.8 ± 3.8 | 57.4 ± 2.2 | 33.4 ± 1.7 |
8d-P.75% | 82.8 ± 1.7 | 92.1 ± 0.4 | 95.8 ± 1.3 | 45.9 ± 5.9 | 56.5 ± 6.1 | 33.3 ± 2.7 |
W#4 | 71.7 ± 3.8 | 87.9 ± 1.7 | 96.9 ± 0.2 | 31.2 ± 5.8 | 75.2 ± 13.1 | 22.7 ± 3.1 |
CH#1 | 76.6 ± 16.4 | 86.9 ± 1.6 | 96.5 ± 2.5 | 74.4 ± 13.5 | 13.1 ± 4.5 | 51.9 ± 11.7 |
8d–T.A.G. | 81.4 ± 1.1 | 91.7 ± 0.9 | 91.6 ± 2.5 | 72.3 ± 4.5 | 10.1 ± 1.4 | 52.1 ± 3.9 |
CH#2 | 83.1 ± 0.8 | 91.1 ± 0.7 | 93.2 ± 0.8 | 70.1 ± 7.4 | 11.5 ± 1.9 | 54.4 ± 6.6 |
8d–P.50% | 79.6 ± 8.3 | 88.9 ± 1.1 | 88.2 ± 4.6 | 62.9 ± 9.8 | 10.1 ± 0.7 | 45.5 ± 4.7 |
Parameter | Non washed | Permeate 50% | Permeate 75% | T. Active Green |
---|---|---|---|---|
R-Sq | 3.07 ± 0.33 | 2.81 ± 0.22 | 1.63 ± 0.47 | 2.93 ± 0.41 |
R-Sa | 2.33 ± 0.27 | 2.12 ± 0.14 | 1.41 ± 0.32 | 1.99 ± 0.25 |
W-Sq | 4.94 ± 0.15 | 3.51 ± 0.50 | 3.42 ± 0.17 | 3.24 ± 0.11 |
W-Sa | 3.81 ± 0.19 | 2.49 ± 0.48 | 2.41 ± 0.12 | 2.08 ± 0.09 |
CH-Sq | 8.51 ± 2.74 | 2.81 ± 0.22 | - | 3.16 ± 0.03 |
CH-Sa | 5.27 ± 1.34 | 2.12 ± 0.14 | - | 1.74 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, P.; Gryta, M. Influence of Reclaimed Water on the Visual Quality of Automotive Coating. Materials 2024, 17, 5382. https://doi.org/10.3390/ma17215382
Woźniak P, Gryta M. Influence of Reclaimed Water on the Visual Quality of Automotive Coating. Materials. 2024; 17(21):5382. https://doi.org/10.3390/ma17215382
Chicago/Turabian StyleWoźniak, Piotr, and Marek Gryta. 2024. "Influence of Reclaimed Water on the Visual Quality of Automotive Coating" Materials 17, no. 21: 5382. https://doi.org/10.3390/ma17215382
APA StyleWoźniak, P., & Gryta, M. (2024). Influence of Reclaimed Water on the Visual Quality of Automotive Coating. Materials, 17(21), 5382. https://doi.org/10.3390/ma17215382