Epitaxy of (11–22) AlN Films on a Sputtered Buffer Layer with Different Annealing Temperatures via Hydride Vapour Phase Epitaxy
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, A.; Balakrishnan, K.; Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2008, 2, 77–84. [Google Scholar] [CrossRef]
- Khan, F.; Ajmal, H.M.S.; Nam, K.; Kim, S.-D. Enhancement in the photonic response of ZnO nanorod–gated AlGaN/GaN HEMTs with N2O plasma treatment. Opt. Express 2020, 28, 27688–27701. [Google Scholar] [CrossRef] [PubMed]
- Masui, H.; Nakamura, S.; DenBaars, S.P.; Mishra, U.K. Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges. IEEE Trans. Electron Devices 2010, 57, 88–100. [Google Scholar] [CrossRef]
- Ranalli, F.; Parbrook, P.J.; Bai, J.; Lee, K.B.; Wang, T.; Cullis, A.G. Non-polar AlN and GaN/AlN on r-plane sapphire. Phys. Status Solidi C 2009, 6, S780–S783. [Google Scholar] [CrossRef]
- Wu, J.-J.; Katagiri, Y.; Okuura, K.; Li, D.-B.; Miyake, H.; Hiramatsu, K. Effects of initial conditions and growth temperature on the properties of nonpolar a -plane AlN grown by LP-HVPE. Phys. Status Solidi C 2009, 6, s478–s481. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Feezell, D. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Phys. Status Solidi A 2019, 216, 1800628. [Google Scholar] [CrossRef]
- Mogilatenko, A.; Kirmse, H.; Stellmach, J.; Frentrup, M.; Mehnke, F.; Wernicke, T.; Kneissl, M.; Weyers, M. Analysis of crystal orientation in AlN layers grown on m-plane sapphire. J. Cryst. Growth 2014, 400, 54–60. [Google Scholar] [CrossRef]
- Nagamatsu, K.; Liu, X.; Uesugi, K.; Miyake, H. Improved emission intensity of UVC-LEDs from using strain relaxation layer on sputter-annealed AlN. Jpn. J. Appl. Phys. 2019, 58, Sccc07. [Google Scholar] [CrossRef]
- Lahnemann, J.; Den Hertog, M.; Hille, P.; de la Mata, M.; Fournier, T.; Schormann, J.; Arbiol, J.; Eickhoff, M.; Monroy, E. UV photosensing characteristics of nanowire-based GaN/AlN superlattices. Nano Lett. 2016, 16, 3260–3267. [Google Scholar] [CrossRef]
- Wunderer, T.; Chua, C.L.; Northrup, J.E.; Yang, Z.; Johnson, N.M.; Kneissl, M.; Garrett, G.A.; Shen, H.; Wraback, M.; Moody, B.; et al. Optically pumped UV lasers grown on bulk AlN substrates. Phys. Status Solidi C 2021, 95, 822–825. [Google Scholar] [CrossRef]
- Burenkov, A.; Matthus, C.D.; Erlbacher, T. Optimization of 4H-SiC UV Photodiode Performance Using Numerical Process and Device Simulation. IEEE Sens. J. 2016, 16, 4246–4252. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Li, E.; Rivera, M.; Velazquez, R.; Altalhi, T.; Peng, X.; Feng, P.X. A new approach for fabrications of SiC based photodetectors. Sci. Rep. 2016, 6, 23457. [Google Scholar] [CrossRef]
- Jung, S.-W.; Shin, M.-C.; Schweitz, M.A.; Oh, J.-M.; Koo, S.-M. Influence of Gas Annealing on Sensitivity of AlN/4H-SiC-Based Temperature Sensors. Materials 2021, 14, 683. [Google Scholar] [CrossRef]
- Akasaka, T.; Kobayashi, Y.; Makimoto, T. Growth of nonpolar AlN (11) and (100) films on SiC substrates by flow-rate modulation epitaxy. Appl. Phys. Lett. 2007, 90, 121919. [Google Scholar] [CrossRef]
- Boichot, R.; Chen, D.; Mercier, F.; Baillet, F.; Giusti, G.; Coughlan, T.; Chubarov, M.; Pons, M. Epitaxial Growth of AlN on (0001) Sapphire: Assessment of HVPE Process by a Design of Experiments Approach. Coatings 2017, 7, 136. [Google Scholar] [CrossRef]
- Okada, N.; Kato, N.; Sato, S.; Sumii, T.; Fujimoto, N.; Imura, M.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; et al. Epitaxial lateral overgrowth of a-AlN layer on patterned a-AlN template by HT-MOVPE. J. Cryst. Growth 2007, 300, 141–144. [Google Scholar] [CrossRef]
- Boichot, R.; Claudel, A.; Baccar, N.; Milet, A.; Blanquet, E.; Pons, M. Epitaxial and polycrystalline growth of AlN by high temperature CVD: Experimental results and simulation. Surf. Coat. Technol. 2010, 205, 1294–1301. [Google Scholar] [CrossRef]
- Pons, M.; Boichot, R.; Coudurier, N.; Claudel, A.; Blanquet, E.; Lay, S.; Mercier, F.; Pique, D. High temperature chemical vapor deposition of aluminum nitride, growth and evaluation. Surf. Coat. Technol. 2013, 230, 111–118. [Google Scholar] [CrossRef]
- Hagedorn, S.; Knauer, A.; Mogilatenko, A.; Richter, E.; Weyers, M. AlN growth on nano-patterned sapphire: A route for cost efficient pseudo substrates for deep UV LEDs. Phys. Status Solidi A 2016, 213, 3178–3185. [Google Scholar] [CrossRef]
- Iba, Y.; Shojiki, K.; Uesugi, K.; Xiao, S.; Miyake, H. MOVPE growth of AlN films on nano-patterned sapphire substrates with annealed sputtered AlN. J. Cryst. Growth 2020, 532, 125397. [Google Scholar] [CrossRef]
- Yusuf, Y.; Samsudin, M.; Sahar, M.M.; Hassan, Z.; Maryam, W.; Zainal, N. High quality aluminum nitride layer grown with a combined step of nitridation and trimethylaluminum preflow. Thin Solid Films 2021, 736, 138915. [Google Scholar] [CrossRef]
- Jinno, D.; Otsuki, S.; Sugimori, S.; Daicho, H.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Characterization and optimization of sputtered AlN buffer layer on r-plane sapphire substrate to improve the crystalline quality of nonpolar a-plane GaN. J. Cryst. Growth 2017, 480, 90–95. [Google Scholar] [CrossRef]
- Miyake, H.; Nishio, G.; Suzuki, S.; Hiramatsu, K.; Fukuyama, H.; Kaur, J.; Kuwano, N. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 2016, 9, 025501. [Google Scholar] [CrossRef]
- Uesugi, K.; Miyake, H. Fabrication of AlN templates by high-temperature face-to-face annealing for deep UV LEDs. Jpn. J. Appl. Phys. 2021, 60, 120502. [Google Scholar] [CrossRef]
- Jo, M.; Itokazu, Y.; Kuwaba, S.; Hirayama, H. Improved crystal quality of semipolar AlN by employing a thermal annealing technique with MOVPE. J. Cryst. Growth 2019, 507, 307–309. [Google Scholar] [CrossRef]
- Itokazu, Y.; Kuwaba, S.; Jo, M.; Kamata, N.; Hirayama, H. Influence of the nucleation conditions on the quality of AlN layers with high-temperature annealing and regrowth processes. Jpn. J. Appl. Phys. 2019, 58, Sc1056. [Google Scholar] [CrossRef]
- Walde, S.; Hagedorn, S.; Weyers, M. Impact of intermediate high temperature annealing on the properties of AlN/sapphire templates grown by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 2019, 58, Sc1002. [Google Scholar] [CrossRef]
- Uedono, A.; Shojiki, K.; Uesugi, K.; Chichibu, S.F.; Ishibashi, S.; Dickmann, M.; Egger, W.; Hugenschmidt, C.; Miyake, H. Annealing behaviors of vacancy-type defects in AlN deposited by radio-frequency sputtering and metalorganic vapor phase epitaxy studied using monoenergetic positron beams. J. Appl. Phys. 2020, 128, 085704. [Google Scholar] [CrossRef]
- Chen, L.; Lin, W.; Chen, H.; Xu, H.; Guo, C.; Liu, Z.; Yan, J.; Sun, J.; Liu, H.; Wu, J.; et al. Annihilation and Regeneration of Defects in (11-22) Semipolar AlN via High-Temperature Annealing and MOVPE Regrowth. Cryst. Growth Des. 2021, 21, 2911–2919. [Google Scholar] [CrossRef]
- Li, D.-D.; Chen, J.-J.; Su, X.-J.; Huang, J.; Niu, M.-T.; Xu, J.-T.; Xu, K. Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE. Chin. Phys. B 2021, 30, 036801. [Google Scholar] [CrossRef]
- Xiao, S.; Jiang, N.; Shojiki, K.; Uesugi, K.; Miyake, H. Preparation of high-quality thick AlN layer on nanopatterned sapphire substrates with sputter-deposited annealed AlN film by hydride vapor-phase epitaxy. Jpn. J. Appl. Phys. 2019, 58, Sc1003. [Google Scholar] [CrossRef]
- Huang, J.; Niu, M.; Sun, M.; Su, X.; Xu, K. Investigation of hydride vapor phase epitaxial growth of AlN on sputtered AlN buffer layers. CrystEngComm 2019, 21, 2431–2437. [Google Scholar] [CrossRef]
- Xiao, S.; Shojiki, K.; Miyake, H. Thick AlN layers grown on micro-scale patterned sapphire substrates with sputter-deposited annealed AlN films by hydride vapor-phase epitaxy. J. Cryst. Growth 2021, 566–567, 126163. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Hayashi, Y.; Hamachi, T.; Tohei, T.; Nakajima, Y.; Xiao, S.; Shojiki, K.; Miyake, H.; Sakai, A. Micro- and Nanostructure Analysis of Vapor-Phase-Grown AlN on Face-to-Face Annealed Sputtered AlN/Nanopatterned Sapphire Substrate Templates. J. Electron. Mater. 2023, 52, 5099–5108. [Google Scholar] [CrossRef]
- Miyake, H.; Lin, C.-H.; Tokoro, K.; Hiramatsu, K. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J. Cryst. Growth 2016, 456, 155–159. [Google Scholar] [CrossRef]
- Tanaka, S.; Shojiki, K.; Uesugi, K.; Hayashi, Y.; Miyake, H. Quantitative evaluation of strain relaxation in annealed sputter-deposited AlN film. J. Cryst. Growth 2019, 512, 16–19. [Google Scholar] [CrossRef]
- Gu, W.; Liu, Z.; Guo, Y.; Wang, X.; Jia, X.; Liu, X.; Zeng, Y.; Wang, J.; Li, J.; Yan, J. Comprehensive study of crystalline AlN/sapphire templates after high-temperature annealing with various sputtering conditions. J. Semicond. 2020, 41, 122802. [Google Scholar] [CrossRef]
- Hagedorn, S.; Walde, S.; Mogilatenko, A.; Weyers, M.; Cancellara, L.; Albrecht, M.; Jaeger, D. Stabilization of sputtered AlN/sapphire templates during high temperature annealing. J. Cryst. Growth 2019, 512, 142–146. [Google Scholar] [CrossRef]
- Hagedorn, S.; Mogilatenko, A.; Walde, S.; Pacak, D.; Weinrich, J.; Hartmann, C.; Weyers, M. High-Temperature Annealing and Patterned AlN/Sapphire Interfaces. Phys. Status Solidi B 2021, 258, 2100187. [Google Scholar] [CrossRef]
- Bersch, B.C.; Caminal Ros, T.; Tollefsen, V.; Johannessen, E.A.; Johannessen, A. Improved Crystallinity of Annealed 0002 AlN Films on Sapphire Substrate. Materials 2023, 16, 2319. [Google Scholar] [CrossRef]
- Dinh, D.V.; Conroy, M.; Zubialevich, V.Z.; Petkov, N.; Holmes, J.D.; Parbrook, P.J. Single phase (112¯2) AlN grown on (101¯0) sapphire by metalorganic vapour phase epitaxy. J. Cryst. Growth 2015, 414, 94–99. [Google Scholar] [CrossRef]
- Stellmach, J.; Frentrup, M.; Mehnke, F.; Pristovsek, M.; Wernicke, T.; Kneissl, M. MOVPE growth of semipolar (112) AlN on m-plane (100) sapphire. J. Cryst. Growth 2012, 355, 59–62. [Google Scholar] [CrossRef]
- Jo, M.; Morishita, N.; Okada, N.; Itokazu, Y.; Kamata, N.; Tadatomo, K.; Hirayama, H. Impact of thermal treatment on the growth of semipolar AlN on m-plane sapphire. AIP Adv. 2018, 8, 105312. [Google Scholar] [CrossRef]
- McLaurin, M.B.; Hirai, A.; Young, E.; Wu, F.; Speck, J.S. Basal Plane Stacking-Fault Related Anisotropy in X-ray Rocking Curve Widths of m-Plane GaN. Jpn. J. Appl. Phys. 2008, 47, 5429–5431. [Google Scholar] [CrossRef]
Author References | Substrate | Sputtering Temperature (°C) | Variant | Annealing Temperature (°C) | HVPE Growth Temperature (°C) | (002) FWHM (Arcsec) | (102) FWHM (Arcsec) |
---|---|---|---|---|---|---|---|
Di-Di Li et al. [30] | Sapphire | 650 | V/Ⅲ | 1500 | 500 | 64 | 648 |
Shiyu Xiao et al. [31] | NPSS | 600 | Growth temperature | 1700 | 1450–1550 | 102 | 219 |
Jun Huang et al. [32] | Sapphire | 650 | Annealing temperature and time | 1400–1550 | 1500 | 28 | 418 |
Shiyu Xiao et al. [33] | μPSSs | 600 | Two-step growth | 1700 | 1500–1600 | 110 | 390 |
Yudai Nakanishi et al. [34] | NPSS | HVPE/ MOVPE | 1700 | 1500 | 4.7 × 108 cm−2 |
HVPE-AlN Samples | Annealing Temperature (°C) | HTA-AlN Buffer Layer |
---|---|---|
A | 0 | A1 |
B | 1400 | B1 |
C | 1500 | C1 |
D | 1550 | D1 |
E | 1600 | E1 |
w/o Annealing | 1400 °C | 1500 °C | 1550 °C | 1600 °C | |
---|---|---|---|---|---|
HTA MS buffer | 0.30 | -- | 0.14 | 0.10 | 0.13 |
HVPE-AlN | 0.19 | 0.08 | 0.04 | 0.06 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Sun, M.; Ji, J.; He, Z.; Zhang, J.; Sun, W. Epitaxy of (11–22) AlN Films on a Sputtered Buffer Layer with Different Annealing Temperatures via Hydride Vapour Phase Epitaxy. Materials 2024, 17, 327. https://doi.org/10.3390/ma17020327
Yan X, Sun M, Ji J, He Z, Zhang J, Sun W. Epitaxy of (11–22) AlN Films on a Sputtered Buffer Layer with Different Annealing Temperatures via Hydride Vapour Phase Epitaxy. Materials. 2024; 17(2):327. https://doi.org/10.3390/ma17020327
Chicago/Turabian StyleYan, Xuejun, Maosong Sun, Jianli Ji, Zhuokun He, Jicai Zhang, and Wenhong Sun. 2024. "Epitaxy of (11–22) AlN Films on a Sputtered Buffer Layer with Different Annealing Temperatures via Hydride Vapour Phase Epitaxy" Materials 17, no. 2: 327. https://doi.org/10.3390/ma17020327
APA StyleYan, X., Sun, M., Ji, J., He, Z., Zhang, J., & Sun, W. (2024). Epitaxy of (11–22) AlN Films on a Sputtered Buffer Layer with Different Annealing Temperatures via Hydride Vapour Phase Epitaxy. Materials, 17(2), 327. https://doi.org/10.3390/ma17020327