A Review on Chemical and Autogenous Shrinkage of Cementitious Systems
Abstract
:1. Introduction
2. Chemical Shrinkage and Autogenous Shrinkage Definition
2.1. Chemical Shrinkage
2.2. Autogenous Shrinkage
3. Chemical and Autogenous Shrinkage Measurement and Techniques
3.1. Chemical Shrinkage Measurement
3.2. Autogenous Shrinkage Measurement
3.2.1. Linear Measurement
3.2.2. Volumetric Measurement
3.2.3. Restrained Deformations: Quasi-Isothermal Ring Test Device
4. Factors Affecting Chemical and Autogenous Shrinkage
4.1. Cement Composition
4.2. Supplementary Cementitious Materials
4.3. Degree of Hydration
4.4. Water to Binder Ratio
4.5. Chemical Admixtures
4.6. Effect of Bio-Fibers on CS and AGS
5. Modeling and Prediction
5.1. Chemical Shrinkage
C3S | + | 5.3 H | → | C1.7SH4 | + | 1.3 CH | |
Molar volume (Vm), cm3/mole | 71.13 | 18.07 | 107.82 | 33.08 | |||
Density (ƿ), g/cm3 | 3.210 | 0.997 | 2.110 | 2.240 | |||
Molar mass (Mr), g/mole | 228.330 | 18.016 | 227.490 | 74.096 | |||
71.13 cm3 + 95.4 cm3 166.53 cm3 | → | 107.82 cm3+ 43.00 cm3 150.82 cm3 | |||||
Chemical shrinkage | = −15.71 cm3/mole of C3S hydrated | = −0.069 cm3/g of C3S hydrated |
5.2. Autogenous Shrinkage
- is the autogenous shrinkage of concrete at time ;
- is a coefficient of cement type ( for PC);
- is the ultimate autogenous shrinkage;
- is a coefficient to describe the development of AS with time;
- and are constants;
- is the age in days;
- is the initial setting time in days.
- is the number of days where a temperature succeeds;
- is the temperature during the time period .
- L = predicted length change (i.e., CS, AS, DS or expansion);
- m = initial rate of length change (IRL);
- x = age (days);
- n = ultimate length change (UL).
6. Conclusions and Recommendations
- Both shrinkage parameters behaved similarly in the first stage of hydration (at initial setting time). After that, the AGS seems to stabilize due to the hardening of the cementitious systems. However, CS continues to increase with the increase in hydration.
- CS development is a function of complex kinetic reactions for each mineral of binder in the system.
- The type of cement plays a role in controlling the CS and AGS of the cementitious system. Also, PC with high fineness particles increases the reaction rate rapidly, resulting in a further contraction phase of CSH gel and a reduction in the CS and AGS.
- Among SCMs, the most active supplementary compound that leads to minimize the autogenous shrinkage is the FA. However, the addition of slag with high content increases the AGS when compared to SF and FA. Moreover, incorporating calcium sulphate-based materials (CaSO4) in cement contributes to the retardation of hydration products which leads to a CS reduction. The incorporation of LF as a cement replacement accelerates the rate of chemical shrinkage.
- CS and AGS depend on the w/b ratio and are proportional to the degree of hydration, especially after 24 h of curing age. As the w/b ratio decreases, the CS and AGS increase. In addition, the greater the degree of hydration, the higher the CS and AGS.
- The addition of chemical admixtures can play a role in reducing CS and AGS of concrete. Adding 2% of SRA reduces the AGS by approximately 40% compared to the control mix.
- Using bio-fibers (PA) resulted in a significant reduction in the CS and AGS of cementitious composites. This reduction can range from 21.4% to 54% when 2% PA fibers were added.
- Future research could investigate the effect of different types of fibers including synthetic and bio-fiber on the CS and AGS in cement-based materials. Also, using fibers in geopolymer mixes can form an area for future study.
- More research is required regarding the impact of bio-fibers on the lifespan of cementitious composites. These may include different treatment methods and their effect on CS and AGS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CS | Chemical shrinkage |
AGS | Autogenous shrinkage |
TCS | Total chemical shrinkage |
ECS | External chemical shrinkage |
P | Portland cement |
HPC | High-performance concrete |
UHPC | Ultra-high-performance concrete |
SCMs | Supplementary cementitious materials |
FA | Fly ash |
SF | Silica fume |
LF | Limestone fines |
LVDT | Linear variable differential transducer |
GBFS | Ground blast furnace slag |
Mk | Metakoalin |
FA-G | Fly-ash-gypsum |
IH | Internal humidity |
w/c | Water cement ratio (c is cement and w is water) |
w/b | Water binder ratio (b consists of cement and SCM) |
References
- Han, Y.; Lin, R.S.; Wang, X.Y. Compressive Strength Estimation and CO2 Reduction Design of Fly Ash Composite Concrete. Buildings 2022, 12, 139. [Google Scholar] [CrossRef]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Campos, H.F.; Klein, N.S.; Marques Filho, J.; Bianchini, M. Low-cement high-strength concrete with partial replacement of Portland cement with stone powder and silica fume designed by particle packing optimization. J. Clean. Prod. 2020, 261, 121228. [Google Scholar] [CrossRef]
- Juenger, M.; Provis, J.L.; Elsen, J.; Matthes, W.; Hooton, R.D.; Duchesne, J.; Courard, L.; He, H.; Michel, F.; Snellings, R.; et al. Supplementary cementitious materials for concrete: Characterization needs. MRS Online Proc. Libr. (OPL) 2021, 1488, 8–22. [Google Scholar] [CrossRef]
- Sun, H.; Qian, J.; Yang, Y.; Fan, C.; Yue, Y. Optimization of gypsum and slag contents in blended cement containing slag. Cem. Concr. Compos. 2020, 112, 03674. [Google Scholar] [CrossRef]
- Tushar, Q.; Bhuiyan, M.A.; Zhang, G.; Maqsood, T.; Tasmin, T. Application of a harmonized life cycle assessment method for supplementary cementitious materials in structural concrete. Constr. Build. Mater. 2022, 316, 125850. [Google Scholar] [CrossRef]
- Soutsos, M.; Kanavaris, F.; Elsageer, M. Accuracy of maturity functions’ strength estimates for fly ash concretes cured at elevated temperatures. Constr. Build. Mater. 2021, 266, 121043. [Google Scholar] [CrossRef]
- Gursel, A.P.; Masanet, E.; Horvath, A.; Stadel, A. Life-cycle inventory analysis of concrete production: A critical review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67, 422–430. [Google Scholar] [CrossRef]
- Arvaniti, E.C.; Juenger, M.C.; Bernal, S.A.; Duchesne, J.; Courard, L.; Leroy, S.; Provis, J.L.; Klemm, A.; De Belie, N. Physical characterization methods for supplementary cementitious materials. Mater. Struct. 2015, 48, 3675–3686. [Google Scholar] [CrossRef]
- Ramadan, R.; Ghanem, H.; Khatib, J.; Elkordi, A. Correlations between different shrinkage parameters and expansion of paste and mortar containing limestone fines. Turk. J. Eng. Res. Educ. 2022, 1, 71–79. [Google Scholar]
- Ramadan, R.; Ghanem, H.; Khatib, J.; Elkordi, A. Effect of hot weather concreting on the mechanical and durability properties of concrete-a review. BAU J.-Sci. Technol. 2022, 4, 4. [Google Scholar] [CrossRef]
- Ramadan, R.; Jahami, A.; Khatib, J.; El-Hassan, H.; Elkordi, A. Improving Structural Performance of Reinforced Concrete Beams with Phragmites Australis Fiber and Waste Glass Additives. Appl. Sci. 2023, 13, 4206. [Google Scholar] [CrossRef]
- Ramadan, R.; Khatib, J.; Ghorbel, E.; Elkordi, A. Effect of Adding Phragmites-Australis Plant on the Chemical Shrinkage and Mechanical Properties of Mortar. In Proceedings of the International Conference on Bio-Based Building Materials, Vienna, Austria, 21–23 June 2023; Springer Nature: Cham, Switzerland, 2023; pp. 573–584. [Google Scholar]
- Muñoz, J.F.; Balachandran, C.; Arnold, T.S. New Chemical Reactivity Index to Assess Alkali–Silica Reactivity. J. Mater. Civ. Eng. 2021, 33, 04021037. [Google Scholar] [CrossRef]
- Le Chatelier, H. Sur les Changements de Volume Qui Accompagnent le Durcissement des Ciments. Bull. Société L’encouragement Pour L’industrie Natl. 1900, 5, 54–57. [Google Scholar]
- Rashad, A.M. An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr. Build. Mater. 2018, 187, 89–117. [Google Scholar] [CrossRef]
- Lee, J.M.; Yang, H.J.; Jang, I.Y.; Kim, S.K.; Jung, D.H. Comparison of calcium aluminate cements on hydration and strength development at different initial curing regimes. Case Stud. Constr. Mater. 2022, 17, e01596. [Google Scholar] [CrossRef]
- Kleib, J.; Aouad, G.; Benzerzour, M.; Abriak, N.E.; Zakhour, M. Managing the Heat Release of Calcium Sulfoaluminate Cement by Modifying the Ye’elimite Content. Materials 2023, 16, 2470. [Google Scholar] [CrossRef]
- Jaberizadeh, M.M.; Danoglidis, P.A.; Shah, S.P.; Konsta-Gdoutos, M.S. Eco-efficient cementitious composites using waste cellulose fibers: Effects on autogenous shrinkage, strength and energy absorption capacity. Constr. Build. Mater. 2023, 408, 133504. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.; Chen, W.; Mu, R. Chemical shrinkage of ferrite-rich calcium sulfoaluminate clinkers with varied gypsum contents. Constr. Build. Mater. 2022, 357, 128729. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Liu, M.; Luo, G.; Tan, H.; Liu, Q. Role of ionic diffusion in heat flow and chemical shrinkage of tricalcium aluminate hydration subjected to thermo-chemo-electrical coupled fields. J. Mater. Res. Technol. 2023, 23, 5341–5356. [Google Scholar] [CrossRef]
- Kurup, D.S.; Mohan, M.K.; Van Tittelboom, K.; De Schutter, G.; Santhanam, M.; Rahul, A.V. Early-age shrinkage assessment of cementitious materials: A critical review. Cem. Concr. Compos. 2024, 145, 105343. [Google Scholar] [CrossRef]
- Justnes, H.; Reyniers, B.; Sellevold, J. An evaluation of methods for measuring chemical shrinkage of cementitious pastes. Adv. Cem. Res. 1995, 7, 85–90. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.; Huang, H. Restraining effect of aggregates on autogenous shrinkage in cement mortar and concrete. Constr. Build. Mater. 2021, 289, 123166. [Google Scholar] [CrossRef]
- Zhutovsky, S.; Kovler, K. Chemical shrinkage of high-strength/high-performance cementitious materials. Int. Rev. Civ. Eng. 2010, 1, 110–118. [Google Scholar] [CrossRef]
- Justnes, H.; Van Gemert, A.; Verboven, F.; Sellevold, E.J. Total and external chemical shrinkage of low W/C ratio cement pastes. Adv. Cem. Res. 1997, 8, 21–126. [Google Scholar] [CrossRef]
- Wright, L.; Khatib, J.M.; Mangat, P.S. Chemical shrinkage of paste containing flue gas desulphurisation (FGD) waste. In Proceedings of the International Symposium on Innovation and Sustainability of Structures in Civil Engineering, Shanghai, China, 28–30 November 2007; pp. 1368–1377. [Google Scholar]
- Reyniers, B.; Van Loo, D. Chemical Shrinkage of Cement. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1993. [Google Scholar]
- Wild, S.; Khatib, J.M.; Roose, L.J. Chemical shrinkage and autogenous shrinkage of Portland cement-metakaolin pastes. Adv. Cem. Res. 1998, 10, 109–119. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Lu, T.; Liang, X.; Liu, C.; Chen, Y.; Li, Z. Experimental and numerical study on the mitigation of autogenous shrinkage of cementitious material. Cem. Concr. Compos. 2023, 141, 105147. [Google Scholar] [CrossRef]
- Hwang, S.D.; Khayat, K.H.; Youssef, D. Effect of moist curing and use of lightweight sand on characteristics of high-performance concrete. Mater. Struct. 2013, 46, 35–46. [Google Scholar] [CrossRef]
- Lura, P. Autogenous Deformation and Internal Curing of Concrete. Ph.D. Thesis, Delft University, Delft, The Netherlands, 2003. [Google Scholar]
- Maruyama, I.; Teramoto, A. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio. Cem. Concr. Res. 2013, 50, 41–50. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, Y.; Wang, Y.; Zhou, Y.; Ma, C. Autogenous shrinkage of high performance concrete containing mineral admixtures under different curing temperatures. Constr. Build. Mater. 2014, 61, 260–269. [Google Scholar] [CrossRef]
- Boivin, S.; Acker, P.; Rigaud, S.; Clavaud, B. Experimental Assessment of Chemical Shrinkage of Hydration Cement Pastes. In International Workshop on Autogenous Shrinkage of Concrete; Tazawa, E., Ed.; Taylor & Francis: Abingdon, UK, 1998; pp. 77–88. [Google Scholar]
- Zhang, B.; Zhu, H.; Feng, P.; Zhang, P. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives. J. Build. Eng. 2022, 49, 104056. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Cheng, Y.; Huseien, G.F.; Shah, K.W. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: A critical review. Constr. Build. Mater. 2022, 318, 125993. [Google Scholar] [CrossRef]
- Swayze, M.A. Early Concrete Volume Changes and Their Control. J. ACI 1942, 38, 425–440. [Google Scholar]
- ASTM C 1608; Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste. American Society for Testing and Materials: West Conshohocken, PA, USA, 2007.
- Justnes, H.; Ardouillie, B.; Hendrix, E.; Sellevold, E.J.; Van Gemert, D. The chemical shrinkage of pozzolanic reaction products. In Proceedings of the 6th Canmet/ACI/JCI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolan in Concrete, Bangkok, Thailand, 31 May–5 June 1998; Malhotra, V.M., Ed.; ACI Special Publications: Farmington Hills, MI, USA, 1998; pp. 191–206. [Google Scholar]
- Justnes, H.; Sellevold, E.J.; Reyniers, B.; Van Loo, D.; Van Gemert, A.; Verboven, F. The influence of cement characteristics on chemical shrinkage. In Proceedings of the International Workshop on Autogenous Shrinkage of Concrete (Autoshrink’98), Hiroshima, Japan, 13–14 June 1998; Tazawa, E.I., Ed.; EandFN Spon: Londres, UK, 1999; pp. 71–80. [Google Scholar]
- Hammer, T.; Heese, C. Early age chemical shrinkage and autogenous deformation of cement pastes. In Proceedings of the 2nd International Research Seminar on Self-Desiccation and Its Importance in Concrete Technology, Lund, Sweden, 18 June 1999; Persson, B., Fagerlund, G., Eds.; Lund University: Lund, Sweden, 1999; pp. 7–13. [Google Scholar]
- Beltzung, F.; Wittmann, F.H. Dissolution of Cement and Early Chemical Shrinkage of Cement Paste; RILEM Publications SARL: Geneva, Switzerland, 2000; pp. 91–97. [Google Scholar]
- Justnes, H.; Sellevold, E.J.; Reyniers, B.; Van Loo, D.; Van Gemert, A.; Verboven, F. Chemical shrinkage of cement pastes with plasticizing admixtures. Nord. Concr. Res. 2000, 24, 39–54. [Google Scholar]
- Charron, J.P.; Marchand, J.; Bissonnette, B. Early-age deformations of hydrating cement systems: Comparison of linear and volumetric shrinkage measurements. In Proceedings of the International Conference on Early Age Cracking in Cementitious Systems (EAC’01), Haifa, Israel, 12–14 March 2001; Bentur, A., Ed.; RILEM Publications: Haifa, Israel, 2001; pp. 245–257. [Google Scholar]
- Charron, J.P.; Marchand, J.; Bissonnette, B.; Pigeon, M.; Zuber, B. Comparative study of the effects of water/binder ratio and silica fume on the volume instability of hydrating cement pastes at early-age. In Proceedings of the 3rd International Research Seminar on Self-Desiccation and Its Importance in Concrete Technology 2002, Lund, Sweden, 14–15 June 2002; Persson, B., Fagerlund, G., Eds.; Lund University: Lund, Sweden, 2002; pp. 39–50. [Google Scholar]
- Lura, P.; Jensen, O.M.; Van Breugel, K. Autogenous shrinkage in high performance cement paste: An evaluation of basic mechanisms. Cem. Concr. Res. 2003, 33, 223–232. [Google Scholar] [CrossRef]
- Lura, P.; Winnefeld, F.; Klemm, S. Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. J. Therm. Anal. Calorim. 2010, 101, 925–932. [Google Scholar] [CrossRef]
- Peethamparan, S.; Weissinger, E.; Vocaturo, J.; Zhang, J.; Scherer, G. Monitoring chemical shrinkage using pressure sensors. Spec. Publ. 2010, 270, 77–88. [Google Scholar]
- Zhang, J.; Weissinger, E.A.; Peethamparan, S.; Scherer, G.W. Early hydration and setting of oil well cement. Cem. Concr. Res. 2010, 40, 1023–1033. [Google Scholar] [CrossRef]
- Ghanem, H.A.; Zollinger, D.; Lytton, L. Predicting ASR Aggregate Reactivity in Terms of its Activation Energy. J. Constr. Build. Mater. 2010, 24, 1101–1108. [Google Scholar] [CrossRef]
- Tazawa, E.; Miyazawa, S. Influence of constituents and composition on autogenous shrinkage of cementitious materials. Mag. Concr. Res. 1997, 49, 5–22. [Google Scholar] [CrossRef]
- Ghanem, H.A.; Zollinger, D.; Lytton, L.; Ghanem, N. Determining aggregate reactivity in various alkaline solutions. ICE Constr. Mater. J. 2013, 167, 151–161. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, P.; Luo, R.; Guo, Y.; Wei, J.; Yu, Q. Measurement of chemical shrinkage of cement paste: Comparison study of ASTM C 1608 and an improved method. Constr. Build. Mater. 2013, 48, 662–669. [Google Scholar] [CrossRef]
- Zhang, Z.; Scherer, G.W. Measuring chemical shrinkage of ordinary Portland cement pastes with high water-to-cement ratios by adding cellulose nanofibrils. Cem. Concr. Compos. 2020, 111, 103625. [Google Scholar] [CrossRef]
- Zhang, Y.; Bouillon, C.; Vlasopoulos, N.; Chen, J.J. Measuring and modeling hydration kinetics of well cements under elevated temperature and pressure using chemical shrinkage test method. Cem. Concr. Res. 2019, 123, 105768. [Google Scholar] [CrossRef]
- Rey, M. Nouvelle Méthode de Mesure de L’hydratation des Liants Hydrauliques; Centre d’Études et de Recherches de l’Industrie des Liants Hydrauliques: Paris, France, 1950; p. 31. [Google Scholar]
- Knudsen, T.; Geiker, M. Chemical shrinkage as an indicator of the stage of hardening. In Proceedings of the International Conference on Concrete at Early Ages, Paris, France, 6–8 April 1982; ENPC Press: Paris, France, 1982; pp. 163–165. [Google Scholar]
- Knudsen, T.; Geiker, M. Obtaining Hydration Data by Measurement of Chemical Shrinkage with an Archimeter. Cem. Concr. Res. 1985, 15, 381–382. [Google Scholar] [CrossRef]
- Geiker, M. Measurements of Chemical Shrinkage and a Systematic Evaluation of Hydration Curves by Means of the Dispersion Model. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 1983. [Google Scholar]
- Geiker, M.; Knudsen, T. Chemical shrinkage of Portland cement pastes. Cem. Concr. Res. 1982, 12, 603–610. [Google Scholar] [CrossRef]
- Paulini, P. A weighing method for cement hydration. In Proceedings of the 9th International Congress on the Chemistry of Cement, New Delhi, India; Mullick, A.K., Ed.; National Council for Cement and Building Materials: New Delhi, India, 1992; pp. 248–254. [Google Scholar]
- Paulini, P. A through solution model for volume changes of cement hydration. Cem. Concr. Res. 1994, 24, 488–496. [Google Scholar] [CrossRef]
- Paulini, P. Chemical shrinkage as indicator for hydraulic bond strength. In Proceedings of the 10th International Congress on the Chemistry of Cement, Gothenburg, Sweden, 2–6 June 1997. [Google Scholar]
- Boivin, S. Retrait au Jeune Âge du Béton: Développement D’une Méthode Expérimentale et Contribution à L’analyse Physique du Retrait Endogène. Ph.D. Thesis, ENPC, Paris, France, 1999. [Google Scholar]
- Jensen, O.M.; Hansen, P.F. Water-entrained cement-based materials II. Experimental observations. Cem. Concr. Res. 2002, 32, 973–978. [Google Scholar] [CrossRef]
- Jensen, O.M.; Hansen, P.F. Autogenous relative humidity change in silica fume modified cement paste. Adv. Cem. Res. 1995, 25, 8–33. [Google Scholar] [CrossRef]
- Craeye, B.; Schutter, G.D. Experimental evaluation of mitigation of autogenous shrinkage by means of a vertical dilatometer for concrete. In Proceedings of the Conference Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures, Ise-Shima, Japan, 30 September–2 October 2008; Tanabe, T., Sakata, K., Mihashi, H., Sato, R., Maekawa, K., Nakamura, H., Eds.; Taylor and Francis Group: London, UK, 2009. ISBN 978-0-415-48508-1. Available online: http://hdl.handle.net/1854/LU-670680 (accessed on 25 December 2023).
- Nawa, T.; Horita, T.; Ohnuma, H. A study on measurement system for autogenous shrinkage of cement mixes. In Concrete Floors and Slabs; Dhir, R.K., Newlands, M.D., Harrison, T.A., Eds.; Thomas Telford: London, UK, 2002; pp. 281–290. [Google Scholar]
- Jensen, O.M.; Lura, P.; Goodwin, F.; Bentz, D.; Hooton, D.; Kovler, K.; Weiss, J. Standard Test Method for Autogenous Strain of Cement Paste and Mortar; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Radocea, A. Autogenous volume change of concrete at very early age. Mag. Concr. Res. 1998, 50, 107–109. [Google Scholar] [CrossRef]
- ASTM C 157; Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM C157-08; ASTM International: West Conshohocken, PA, USA, 2008.
- Bouasker, M.; Grondin, F.; Mounanga, P.; Pertué, A.; Khelidj, A. Improved measurement methods for autogenous shrinkage of cement mortars at very early age. In Proceedings of the International Conference Advances in Concrete through Science and Engineering, Quebec City, QC, Canada, 11–13 September 2006. [Google Scholar]
- Tazawa, E.I. Autogenous Shrinkage of Concrete; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar] [CrossRef]
- Breugel, K.V.; Tuan, N. Autogenous Shrinkage of HPC and Ways to Mitigate it. Keys Eng. Mater. 2015, 629, 3–20. [Google Scholar] [CrossRef]
- Burrows, R.W. The Visible and Invisible Cracking of Concrete; American Concrete Institute: Farmington Hills, MI, USA, 1998. [Google Scholar]
- Mehta, P.K.; Burrows, R.W. Building durable structures in the 21st century. Indian Concr. J. 2001, 75, 37–443. [Google Scholar]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Bentz, D.P.; Lura, P.; Roberts, J.W. Mixture Proportioning for Internal Curing. Concr. Int. 2005, 27, 35–40. [Google Scholar]
- Maruyama, I.; Beppu, K.; Kurihara, R.; Furuta, A. Action mechanisms of shrinkage reducing admixture in hardened cement paste. J. Adv. Concr. Technol. 2016, 14, 311–323. [Google Scholar] [CrossRef]
- Bentz, D.P. Influence of shrinkage-reducing admixtures on early-age properties of cement pastes. J. Adv. Concr. Technol. 2006, 4, 423–429. [Google Scholar] [CrossRef]
- Malhotra, V.M.; Mehta, P.K. High Performance, High-Volume Fly Ash Concrete for Building Sustainable and Durable Structure, 3rd ed.; 2008; Available online: https://tarjomefa.com/wp-content/uploads/2016/08/5106-English.pdf (accessed on 25 December 2023).
- Turcry, P.; Loukili, A.; Barcelo, L.; Casabonne, J.M. Can the maturity concept be used to separate the autogenous shrinkage and thermal deformation of a cement paste at early age? Cem. Concr. Res. 2002, 32, 1443–1450. [Google Scholar] [CrossRef]
- Ahmad, S.; Al-Amoudi, O.S.; Khan, S.M.; Maslehuddin, M. Effect of Silica Fume Inclusion on the Strength, Shrinkage and Durability Characteristics of Natural Pozzolan-Based Cement Concrete. Case Stud. Constr. Mater. 2022, 17, e01255. [Google Scholar] [CrossRef]
- Baalbaki, O.; Elkordi, A.; Ghanem, H.; Machaka, M.; Khatib, J.M. Properties of concrete made of fine aggregates partially replaced by incinerated municipal solid waste bottom ash. Acad. J. Civ. Eng. 2019, 37, 532–538. [Google Scholar] [CrossRef]
- Al-Yousuf, A.; Pokharel, T.; Lee, J.; Gad, E.; Abdouka, K.; Sanjayan, J. Effect of fly ash and slag on properties of normal and high strength concrete including fracture energy by wedge splitting test: Experimental and numerical investigations. Constr. Build. Mater. 2021, 271, 121553. [Google Scholar] [CrossRef]
- Carmichael, M.J.; Arulraj, G.P.; Meyyappan, P.L. Effect of partial replacement of cement with nano fly ash on permeable concrete: A strength study. Mater. Today Proc. 2021, 43, 2109–2116. [Google Scholar] [CrossRef]
- Ghafari, E.; Ghahari, S.A.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high-performance concrete. Constr. Build. Mater. 2016, 127, 43–48. [Google Scholar] [CrossRef]
- Ghanem, H.; Machaka, M.; Khatib, J.; Elkordi, A.; Baalbaki, O. Effect of partial replacement of cement by MSWIBA on the properties of mortar. Acad. J. Civ. Eng. 2019, 37, 82–89. [Google Scholar] [CrossRef]
- Machaka, M.; Khatib, J.; Elkordi, A.; Ghanem, H.; Baalbaki, O. Selected properties of concrete containing Municipal Solid Waste Incineration Bottom Ash (MSWIBA). In Proceedings of the 5th International Conference on Sustainable Construction Materials and Technologies (SCMT5), Kingston, UK, 14—17 July 2019; pp. 305–317. [Google Scholar]
- Merabti, S.; Kenai, S.; Belarbi, R.; Khatib, J. Thermo-mechanical and physical properties of waste granular cork composite with slag cement. Constr. Build. Mater. 2021, 272, 121923. [Google Scholar] [CrossRef]
- Ouldkhaoua, Y.; Benabed, B.; Abousnina, R.; Kadri, E.H.; Khatib, J. Effect of using metakaolin as supplementary cementitious material and recycled CRT funnel glass as fine aggregate on the durability of green self-compacting concrete. Constr. Build. Mater. 2020, 235, 117802. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, B.; Hu, X.; Liu, J.; Zhang, Z.; Pan, X.; Xie, Z.; Chang, J.; Zhang, T.; Nehdi, M.L.; et al. Effect of CO2 surface treatment on penetrability and microstructure of cement-fly ash–slag ternary concrete. Cem. Concr. Compos. 2021, 123, 104194. [Google Scholar] [CrossRef]
- Zeng, H.; Li, Y.; Zhang, J.; Chong, P.; Zhang, K. Effect of limestone powder and fly ash on the pH evolution coefficient of concrete in a sulfate-freeze–thaw environment. J. Mater. Res. Technol. 2022, 16, 1889–1903. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Lee, H.S.; Wang, X.Y. Autogenous shrinkage, strength, and hydration heat of ultra-high-strength paste incorporating nano-zirconium dioxide. Sustainability 2020, 12, 9372. [Google Scholar] [CrossRef]
- Mazloom, M.; Ramezanianpour, A.; Brooks, J. Effect of silica fume on mechanical properties of high-strength concrete. Cem. Concr. Compos. 2004, 26, 347–357. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. The functional role of polyamines in eukaryotic cells. Int. J. Biochem. Cell Biol. 2019, 107, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sato, R.; Kawai, K. Autogenous shrinkage of high-strength concrete containing silica fume under drying at early ages. Cem. Concr. Res. 2005, 35, 449–456. [Google Scholar] [CrossRef]
- Chu, I.; Kwon, S.H.; Amin, M.N.; Kim, J.K. Estimation of temperature effects on autogenous shrinkage of concrete by a new prediction model. Constr. Build. Mater. 2012, 35, 171–182. [Google Scholar] [CrossRef]
- Holt, E. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cem. Concr. Res. 2005, 35, 464–472. [Google Scholar] [CrossRef]
- Rao, G.A. Long-term drying shrinkage of mortar—Influence of silica fume and size of fine aggregate. Cem. Concr. Res. 2001, 31, 171–175. [Google Scholar] [CrossRef]
- Voigt, T.; Bui, V.K.; Shah, S.P. Drying shrinkage of concrete reinforced with fibers and welded-wire fabric. Mater. J. 2004, 101, 233–241. [Google Scholar]
- Lee, K.M.; Lee, H.K.; Lee, S.H.; Kim, G.Y. Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cem. Concr. Res. 2006, 36, 1279–1285. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.; Huang, H. Effect of supplementary materials on the autogenous shrinkage of cement paste. Materials 2020, 13, 3367. [Google Scholar] [CrossRef]
- Li, Y.; Bao, J.; Guo, Y. The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures. Constr. Build. Mater. 2010, 24, 1855–1860. [Google Scholar] [CrossRef]
- Huang, K.; Deng, M.; Mo, L.; Wang, Y. Early age stability of concrete pavement by using hybrid fiber together with MgO expansion agent in high altitude locality. Constr. Build. Mater. 2013, 48, 685–690. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T.; Nakai, M.; Saito, T. Effect of fly ash on autogenous shrinkage. Cem. Concr. Res. 2005, 35, 473–482. [Google Scholar] [CrossRef]
- Xing, F.; Yin, H.; Wang, C. Experimental studies on the volume change of the super high strength and high performance concrete. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2009; Volume 405, pp. 249–255. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, Z.; Wang, P.; Wang, X. Study on self-desiccation effect of high performance concrete. J. Build. Mater. 2004, 7, 19–24. (In Chinese) [Google Scholar]
- Gdoutos, M.K.; Shah, S.; Dattatraya, D. Relationships between engineering characteristics and material properties of high strength-high performance concrete, Role of Concrete in Sustainable Development. In Proceedings of the International Symposium dedicated to Professor Surendra Shah, Northwestern University, USA held on 3–4 September 2003 at the University of Dundee, Scotland, UK, Dundee, Scotland, UK, 3–4 September 2003; Thomas Telford Publishing: London, UK, 2003; pp. 37–46. [Google Scholar]
- Subramaniam, K.V.; Gromotka, R.; Shah, S.P.; Obla, K.; Hill, R. Influence of ultrafine fly ash on the early age response and the shrinkage cracking potential of concrete. J. Mater. Civ. Eng. 2005, 17, 45–53. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Y.; Yuan, L.; Xu, D.; Du, P.; Hou, P.; Zhou, Z.; Cheng, X.; Liu, S.; Wang, Y. Effect of nano-silica on chemical and volume shrinkage of cement-based composites. Constr. Build. Mater. 2020, 247, 118529. [Google Scholar] [CrossRef]
- Costa, U.; Massazza, F. Some properties of pozzolanic cements containing fly ashes. In Proceedings of the 1st International Congress on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, Montebello, QC, Canada, 31 July–5 August 1983; Malhotra, V., Ed.; American Concrete Institute Special Publication: Columbia, MD, USA, 1983; Volume 1, pp. 35–254. [Google Scholar]
- Fajun, W.; Grutzeck, M.W.; Roy, D.M. The retarding effects of fly ash upon the hydration of cement pastes: The first 24 h. Cem. Concr. Res. 1985, 15, 174–184. [Google Scholar] [CrossRef]
- Tazawa, E.I.; Sato, R.; Sakai, E.; Miyazawa, S. Work of JCI committee on autogenous shrinkage. In International RILEM Workshop on Shrinkage of Concrete; RILEM Publications SARL: Pairs, France, 2000; pp. 21–33. [Google Scholar]
- Afroz, S.; Zhang, Y.; Nguyen, Q.D.; Kim, T.; Castel, A. Shrinkage of blended cement concrete with fly ash or limestone calcined clay. Mater. Struct. 2023, 56, 15. [Google Scholar] [CrossRef]
- Khatib, J.M.; Wright, L.; Mangat, P.S. Mechanical and physical properties of concrete containing FGD waste. Mag. Concr. Res. 2016, 68, 550–560. [Google Scholar] [CrossRef]
- Kadri, E.H.; Aggoun, S.; De Schutter, G.; Ezziane, K. Combined effect of chemical nature and fineness of mineral powders on Portland cement hydration. Mater. Struct. 2010, 43, 665–673. [Google Scholar] [CrossRef]
- Poon, C.S.; Kou, S.C.; Lam, L.; Lin, Z.S. Activation of fly ash/cement systems using calcium sulphate anhydrite (CaSO4). Cem. Concr. Res. 2001, 31, 873–881. [Google Scholar] [CrossRef]
- Navarrete, I.; Vargas, F.; Martinez, P.; Paul, A.; Lopez, M. Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials. J. Clean. Prod. 2021, 283, 124646. [Google Scholar] [CrossRef]
- Telesca, A.; Marroccoli, M.; Calabrese, D.; Valenti, G.L.; Montagnaro, F. Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials. Waste Manag. 2013, 33, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhu, H.; Wu, K.; Zhao, X.; Wang, F.; Liao, Q. Assessment of waste hardened cement mortar utilization as an alternative sorbent to remove SO2 in flue gas. J. Hazard. Mater. 2020, 392, 122492. [Google Scholar] [CrossRef] [PubMed]
- Ragipani, R.; Escobar, E.; Prentice, D.; Bustillos, S.; Simonetti, D.; Sant, G.; Wang, B. Selective sulfur removal from semi-dry flue gas desulfurization coal fly ash for concrete and carbon dioxide capture applications. Waste Manag. 2021, 121, 117–126. [Google Scholar] [CrossRef]
- Menendez, G.; Bonavetti, V.; Irassar, E.F. Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos. 2003, 25, 61–67. [Google Scholar] [CrossRef]
- Weerdt, K.D.; Justnes, H.; Kjellsen, K.O. Fly ash–limestone ternary composite cements: Synergetic effect at 28 days. Nord. Concr. Res. 2010, 42, 51–70. [Google Scholar]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H. A review on effects of limestone powder on the properties of concrete. Constr. Build. Mater. 2018, 192, 153–166. [Google Scholar] [CrossRef]
- Du, H.; Pang, S.D. High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Constr. Build. Mater. 2020, 264, 120152. [Google Scholar] [CrossRef]
- Khatib, J.; Ramadan, R.; Ghanem, H.; Elkordi, A. Volume stability of cement paste containing limestone fines. Buildings 2021, 8, 366. [Google Scholar] [CrossRef]
- Khatib, J.; Ramadan, R.; Ghanem, H.; ElKordi, A. Effect of using limestone fines on the chemical shrinkage of pastes and mortars. Environ. Sci. Pollut. Res. 2023, 30, 25287–25298. [Google Scholar] [CrossRef]
- Khatib, J.M.; Ramadan, R.; Ghanem, H.; Elkordi, A.; Sonebi, M. Effect of limestone fines as a partial replacement of cement on the chemical, autogenous, drying shrinkage and expansion of mortars. Mater. Today Proc. 2022, 58, 1199–1204. [Google Scholar] [CrossRef]
- Khatib, J.M.; Ramadan, R.; Ghanem, H.; Elkordi, A.; Baalbaki, O.; Kırgız, M. Chemical shrinkage of paste and mortar containing limestone fines. Mater. Today Proc. 2022, 61, 530–536. [Google Scholar] [CrossRef]
- Bouasker, M.; Mounanga, P.; Turcry, P.; Loukili, A.; Khelidj, A. Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions. Cem. Concr. Compos. 2008, 30, 13–22. [Google Scholar] [CrossRef]
- Ukrainczyk, N. Chemical shrinkage during hydration reactions of calcium aluminate cement. Austin J. Chem. Eng. 2014, 1, 7. [Google Scholar]
- Wang, C.; Wang, Y.W.; Pu, X.C. Autogenous shrinkage characteristics and mechanism of ultra-low water cement concrete. J. Build. Mater. 2010, 1, 75–79. [Google Scholar]
- Courard, L.; Michel, F. Limestone fillers cement based composites: Effects of blast furnace slags on fresh and hardened properties. Constr. Build. Mater. 2014, 51, 439–445. [Google Scholar] [CrossRef]
- Bentz, D.P.; Irassar, E.F.; Bucher, B.E.; Weiss, W.J. Limestone fillers conserve cement; Part 1: An analysis based on Powers’ model. Concr. Int. 2009, 31, 41–46. [Google Scholar]
- Markandeya, A.; Mapa, D.G.; Fincan, M.; Shanahan, N.; Stetsko, Y.P.; Riding, K.A.; Zayed, A. Chemical shrinkage and cracking resilience of metakaolin concrete. ACI Mater. J. 2019, 116, 51716714. [Google Scholar] [CrossRef]
- Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F. Thermodynamics and cement science. Cem. Concr. Res. 2011, 41, 679–695. [Google Scholar] [CrossRef]
- Kheir, J.; Hilloulin, B.; Loukili, A.; De Belie, N. Chemical shrinkage of low water to cement (W/c) ratio cem i and cem iii cement pastes incorporating silica fume and filler. Materials 2021, 14, 1164. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Chen, H.; Wyrzykowski, M.; Scrivener, K.; Lura, P. Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution. Cem. Concr. Res. 2013, 49, 38–47. [Google Scholar] [CrossRef]
- Baroghel-Bouny, V.; Mounanga, P.; Khelidj, A.; Loukili, A.; Rafaï, N. Autogenous deformations of cement pastes Part II. W/C effects, micro–macro correlations, and threshold values. Cem. Concr. Res. 2006, 36, 123–136. [Google Scholar] [CrossRef]
- Miao, B. A new method to measure the early-age. In PRO 17: International RILEM Workshop on Shrinkage of Concrete-’Shrinkage; RILEM Publications: Paris, France, 2000; Volume 17, p. 381. [Google Scholar]
- Maruyama, I.; Igarashi, G. Cement reaction and resultant physical properties of cement paste. J. Adv. Concr. Technol. 2014, 12, 200–213. [Google Scholar] [CrossRef]
- Shanahan, N.; Tran, V.; Zayed, A. Heat of hydration prediction for blended cements. J. Therm. Anal. Calorim. 2017, 128, 1279–1291. [Google Scholar] [CrossRef]
- Yan, P.Y.; Zheng, F.; Xu, Z.Q. Hydration of shrinkage-compensating binders with different compositions and water-binder ratios. J. Therm. Anal. Calorim. 2003, 74, 201–209. [Google Scholar] [CrossRef]
- Feng, J.J.; Miao, M.; Yan, P.Y. The effect of curing temperature on the properties of shrinkage-compensated binder. Sci. China Technol. Sci. 2011, 54, 1715–1721. [Google Scholar] [CrossRef]
- Collepardi, M.; Borsoi, A.; Collepardi, S.; Olagot, J.J.O.; Troli, R. Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet curing conditions. Cem. Concr. Compos. 2005, 27, 704–708. [Google Scholar] [CrossRef]
- Lura, P.; Pease, B.; Mazzotta, G.B.; Rajabipour, F.; Weiss, J. Influence of shrinkage-reducing admixtures on development of plastic shrinkage cracks. ACI Mater. J. 2007, 104, 187. [Google Scholar]
- Palacios, M.; Puertas, F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007, 37, 691–702. [Google Scholar] [CrossRef]
- Weiss, J.; Lura, P.; Rajabipour, F.; Sant, G. Performance of shrinkage-reducing admixtures at different humidities and at early ages. ACI Mater. J. 2008, 105, 478. [Google Scholar]
- Lupoi, A.; Callari, C. A probabilistic method for the seismic assessment of existing concrete gravity dams. Struct. Infrastruct. Eng. 2012, 8, 985–998. [Google Scholar] [CrossRef]
- Yoo, S.W.; Kwon, S.J.; Jung, S.H. Analysis technique for autogenous shrinkage in high performance concrete with mineral and chemical admixtures. Constr. Build. Mater. 2012, 34, 1–10. [Google Scholar] [CrossRef]
- Kotrla, J.; Soukal, F.; Bilek, V.; Alexa, M. Effects of shrinkage-reducing admixtures on autogenous shrinkage in alkali-activated materials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 583, 012023. [Google Scholar] [CrossRef]
- Saliba, J.; Rozière, E.; Grondin, F.; Loukili, A. Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage. Cem. Concr. Compos. 2011, 33, 209–217. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Ramadan, R.; Ghanem, H.; Khatib, J.; ElKordi, A. Effect of incorporating plant-based natural fibers on the mechanical and durability properties of pastes and mortars. Int. J. Mason. Res. Innov. 2024, in press. [Google Scholar]
- Ramadan, R.; Ghanem, H.; Khatib, J.; ElKordi, A. Effect of Plant-based natural fibers on the mechanical properties and volume change of cement paste. Int. J. Build. Pathol. Adapt. 2024, in press. [Google Scholar]
- Khatib, J.; Ramadan, R.; Ghanem, H.; ElKordi, A. Effect of adding bio-fiber materials from Phragmites-Australis plant on the mechanical properties and volume stability of mortar. Fibers 2024. under review. [Google Scholar]
- Knudsen, T. The dispersion model for hydration of Portland cement I. General concepts. Cem. Concr. Res. 1984, 14, 622–630. [Google Scholar] [CrossRef]
- Pommersheim, J.M. and Clifton, J.R. Mathematical modeling of tricalcium silicate hydration. Cem. Concr. Res. 1979, 9, 765–770. [Google Scholar] [CrossRef]
- Powers, T.C.; Brownyard, T.L. Landmark Series: Studies of the Physical Properties of Hardened Portland Cement Paste, Part 2. Concr. Int. 2003, 25, 31–42. [Google Scholar]
- Tennis, P.D.; Jennings, H.M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Concr. Res. 2000, 30, 855–863. [Google Scholar] [CrossRef]
- Tazawa, E.I.; Miyazawa, S.; Kasai, T. Chemical shrinkage and autogenous shrinkage of hydrating cement paste. Cem. Concr. Res. 1995, 25, 288–292. [Google Scholar] [CrossRef]
- Copeland, L.E.; Kantro, D.L.; Verbeck, G. Chemistry of hydration of Portland cement. In Proceedings of the 4th International Symposium on the Chemistry of Cement, Washington, DC, USA, 2–7 October 1960; Portland Cement Association: Skokie, IL, USA, 1960; pp. 429–468. [Google Scholar]
- Jennings, H.M.; Dalgleish, P.L.; Pratt, J. Morphological development of hydrating tricalcium silicate as examined by electron microscopy techniques. J. Am. Ceram. Soc. 1981, 64, 567–572. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, C.; Cao, Z.; Ou, Z.; Wang, D.; Wu, Z.; He, L. A review on testing methods for autogenous shrinkage measurement of cement-based materials. J. Sustain. Cem.-Based Mater. 2013, 2, 161–171. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lee, H.S. Heat of hydration models of cementitious materials. Adv. Cem. Res. 2012, 24, 77–90. [Google Scholar] [CrossRef]
- Khatib, J.M. Metakaolin concrete at a low water to binder ratio. Constr. Build. Mater. 2008, 22, 1691–1700. [Google Scholar] [CrossRef]
- Khatib, J.M.; Kayali, O.; Siddique, R. Dimensional Stability and Strength of Cement-Fly Ash-Metakaolin Mortar. Am. Soc. Civ. Eng. (ASCE) Mater. Civ. Eng. J. 2009, 21, 523–528. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanem, H.; Ramadan, R.; Khatib, J.; Elkordi, A. A Review on Chemical and Autogenous Shrinkage of Cementitious Systems. Materials 2024, 17, 283. https://doi.org/10.3390/ma17020283
Ghanem H, Ramadan R, Khatib J, Elkordi A. A Review on Chemical and Autogenous Shrinkage of Cementitious Systems. Materials. 2024; 17(2):283. https://doi.org/10.3390/ma17020283
Chicago/Turabian StyleGhanem, Hassan, Rawan Ramadan, Jamal Khatib, and Adel Elkordi. 2024. "A Review on Chemical and Autogenous Shrinkage of Cementitious Systems" Materials 17, no. 2: 283. https://doi.org/10.3390/ma17020283
APA StyleGhanem, H., Ramadan, R., Khatib, J., & Elkordi, A. (2024). A Review on Chemical and Autogenous Shrinkage of Cementitious Systems. Materials, 17(2), 283. https://doi.org/10.3390/ma17020283