The Influence of Local Constraints on Solvent Motion in Polymer Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masaro, L.; Zhu, X.X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 1999, 24, 731–775. [Google Scholar] [CrossRef]
- Kohli, I.; Mukhopadhyay, A. Diffusion of nanoparticles in semidilute polymer solutions: Effect of different length scales. Macromolecules 2012, 45, 6143–6149. [Google Scholar] [CrossRef]
- Grabowski, C.A.; Mukhopadhyay, A. Size effect of nanoparticle diffusion in a polymer melt. Macromolecules 2014, 47, 7238–7242. [Google Scholar] [CrossRef]
- Vagias, A.; Schulze, J.; Doroshenko, M.; Koynov, K.; Butt, H.-J.; Gauthier, M.; Fytas, G.; Vlassopoulos, D. Molecular tracer diffusion in nondilute polymer solutions: Universal master curve and glass transition effects. Macromolecules 2015, 48, 8907–8912. [Google Scholar] [CrossRef]
- Sozański, K.; Wiśniewska, A.; Kalwarczyk, T.; Hołyst, R. Activation energy for mobility of dyes and proteins in polymer solutions: From diffusion of single particles to macroscale flow. Phys. Rev. Lett. 2013, 111, 22830. [Google Scholar] [CrossRef]
- Vagias, A.; Raccis, R.; Koynov, K.; Jonas, U.; Butt, H.-J.; Fytas, G.; Košovan, P.; Lenz, O.; Holm, C. Complex tracer diffusion dynamics in polymer solutions. Phys. Rev. Lett. 2013, 111, 088301. [Google Scholar] [CrossRef]
- Cherdhirankorn, T.; Harmandaris, V.; Juhari, A.; Voudouris, P.; Fytas, G.; Kremer, K.; Koynov, K. Fluorescence correlation spectroscopy study of molecular probe diffusion in polymer melts. Macromolecules 2009, 42, 4858–4866. [Google Scholar] [CrossRef]
- Vagias, A.; Košovan, P.; Koynov, K.; Holm, C.; Butt, H.-J.; Fytas, G. Dynamics in stimuli-responsive poly(N-isopropylacrylamide) hydrogel layers as revealed by fluorescence correlation spectroscopy. Macromolecules 2014, 47, 5303–5512. [Google Scholar] [CrossRef]
- Raccis, R.; Roskamp, R.; Hopp, I.; Menges, B.; Koynov, K.; Jonas, U.; Knoll, W.; Butt, H.-J.; Fytas, G. Probing mobility and structural inhomogeneities in grafted hydrogel films by fluorescence correlation spectroscopy. Soft Matter 2011, 7, 7042–7053. [Google Scholar] [CrossRef]
- Cherdhirankorn, T.; Floudas, G.; Butt, H.-J.; Koynov, K. Effects of chain topology on the tracer diffusion in star polyisoprenes. Macromolecules 2009, 42, 9183–9789. [Google Scholar] [CrossRef]
- Piechocki, K.; Koynov, K.; Piechocka, J.; Chamerski, K.; Filipecki, J.; Maczugowska, P.; Kozanecki, M. Small molecule diffusion in poly-(olygo ethylene glycol methacrylate) based hydrogels studied by fluorescence correlation spectroscopy. Polymer 2022, 244, 124628. [Google Scholar] [CrossRef]
- Petit, J.-M.; Zhu, X.X.; Macdonald, P.M. Solute probe diffusion in aqueous solutions of Poly(vinyl alcohol) as studied by pulsed-gradient spin-echo NMR spectroscopy. Macromolecules 1996, 29, 70–76. [Google Scholar] [CrossRef]
- Cicerone, M.T.; Blackburn, F.R.; Ediger, M.D. Anomalous diffusion of probe molecules in polystyrene: Evidence for spatially heterogeneous segmental dynamics. Macromolecules 1995, 28, 8224–8232. [Google Scholar] [CrossRef]
- Tihminlioglu, F.; Danner, R.P. Solvent diffusion in amorphous polymers: Polystyrene-solvent systems. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 1965–1974. [Google Scholar] [CrossRef]
- George, S.C.; Thomas, S. Transport phenomena through polymeric systems. Prog. Polym. Sci. 2001, 26, 985–1017. [Google Scholar] [CrossRef]
- Condamin, S.; Tejedor, V.; Voituriez, R.; Bénichou, O.; Klafter, J. Probing microscopic origins of confined subdiffusion by first-passage observables. Proc. Natl. Acad. Sci. USA 2008, 105, 5675–5680. [Google Scholar] [CrossRef] [PubMed]
- Banks, D.S.; Fradin, C. Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 2005, 89, 2960–2971. [Google Scholar] [CrossRef]
- Guglas, G.; Kalla, C.; Weiss, M. The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved. FEBS Lett. 2008, 581, 5094–5098. [Google Scholar]
- Dix, J.A.; Verkman, A.S. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 2008, 37, 247–263. [Google Scholar] [CrossRef]
- Fanelli, D.; McKane, A.J. Diffusion in a crowded environment. Phys. Rev. E 2010, 82, 021113. [Google Scholar] [CrossRef]
- Wang, K.; Composto, R.J.; Winey, K.I. ToF-SIMS depth profiling to measure nanoparticle and polymer diffusion in polymer melts. Macromolecules 2023, 56, 2277–2285. [Google Scholar] [CrossRef]
- Ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Sokolov, I.M. Models of anomalous diffusion in crowded environments. Soft Matter 2012, 8, 9043–9052. [Google Scholar] [CrossRef]
- Höfling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 2013, 76, 046602. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Ogston, A.G.; Preston, B.N.; Wells, J.D. On the transport of compact particles through solutions of chain-polymers. Proc. R. Soc. London A 1973, 333, 297–316. [Google Scholar]
- Johansson, L.; Elvingson, C.; Löfroth, J.E. Diffusion and interaction in gels and solutions. 3. Theoretical results on the obstruction effect. Macromolecules 1991, 24, 6024–6029. [Google Scholar] [CrossRef]
- Mackie, J.S.; Mears, P. The diffusion of electrolytes in a cation-exchange resin membrane I. Theoretical. Proc. R. Soc. London A 1955, 232, 498–509. [Google Scholar]
- Waggoner, A.R.; Blum, F.D.; MacElroy, J.M.D. Dependence of the solvent diffusion coefficient on concentration in polymer solutions. Macromolecules 1993, 26, 6841–6848. [Google Scholar] [CrossRef]
- Axpe, E.; Chan, D.; Offeddu, G.S.; Chang, Y.; Merida, D.; Lopez Hernandez, H.; Appel, E.A. A multiscale model for solute diffusion in hydrogels. Macromolecules 2019, 52, 6889–6897. [Google Scholar] [CrossRef]
- Phillies, G.D.J.; Ullmann, G.S.; Ullmann, K.; Lin, T.H. Phenomenological scaling laws for ‘‘semidilute’’ macromolecule solutions from light scattering by optical probe particles. J. Chem. Phys. 1985, 82, 5242–5246. [Google Scholar] [CrossRef]
- Phillies, G.D.J. Quantitative prediction of α in the scaling law for self-diffusion. Macromolecules 1988, 21, 3101–3106. [Google Scholar] [CrossRef]
- Cukier, R.I. Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules 1984, 17, 252–256. [Google Scholar] [CrossRef]
- Dong, Y.; Feng, X.; Zhao, N.; Hou, Z. Diffusion of nanoparticles in semidilute polymer solutions: A mode-coupling theory study. J. Chem. Phys. 2015, 143, 024903. [Google Scholar] [CrossRef] [PubMed]
- Vrentas, J.S.; Duda, J.L.; Ling, H.C. Self-diffusion in polymer-solvent-solvent systems. J. Polym. Sci. Polym. Phys. Ed. 1985, 22, 459–469. [Google Scholar] [CrossRef]
- Vrentas, J.S.; Duda, J.L.; Ling, H.C. Free-volume theories for self-diffusion in polymer–solvent systems. II. Predictive capabilities. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 289–304. [Google Scholar] [CrossRef]
- Fujita, H. Diffusion in polymer-diluent systems. Adv. Polym. Sci. 1961, 3, 1–47. [Google Scholar]
- Yasuda, H.; Lamaze, C.E.; Ikenberry, L.D. Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Makromol. Chem. 1968, 118, 19–35. [Google Scholar] [CrossRef]
- Mansuri, A.; Völkel, M.; Feuerbach, T.; Winck, J.; Vermeer, A.W.P.; Hoheisel, W.; Thommes, M. Modified free volume theory for self-diffusion of small molecules in amorphous polymers. Macromolecules 2023, 56, 3224–3237. [Google Scholar] [CrossRef]
- Amsden, B.G. Hydrogel mesh size and its impact on predictions of mathematical models of the solute diffusion coefficient. Macromolecules 2022, 55, 8399–8408. [Google Scholar] [CrossRef]
- Żerko, S.; Polanowski, P.; Sikorski, A. Percolation in two-dimensional cyclic chains systems. Soft Matter 2012, 8, 973–979. [Google Scholar] [CrossRef]
- Polanowski, P.; Sikorski, A. Simulation of diffusion in a crowded environment. Soft Matter 2014, 10, 3597–3607. [Google Scholar] [CrossRef] [PubMed]
- Kozanecki, M.; Hałagan, K.; Saramak, J.; Matyjaszewski, K. Diffusive properties of solvent molecules in the neighborhood of a polymer chain as seen by Monte-Carlo simulations. Soft Matter 2016, 12, 5519–5528. [Google Scholar] [CrossRef] [PubMed]
- Polanowski, P.; Sikorski, A. Diffusion of small particles in polymer films. J. Chem. Phys. 2017, 147, 014902. [Google Scholar] [CrossRef] [PubMed]
- Polanowski, P.; Sikorski, A. Motion in a crowded environment: The influence of obstacles’ size and model of transport. J. Mol. Model. 2019, 25, 84. [Google Scholar] [CrossRef] [PubMed]
- Polanowski, P.; Sikorski, A. Simulation of molecular transport in systems containing mobile obstacles. J. Phys. Chem. B 2016, 120, 7529–7537. [Google Scholar] [CrossRef]
- Lin, T.-W.; Mei, B.; Schweizer, K.S.; Sing, C.E. Simulation study of the effects of polymer network dynamics and mesh confinement on the diffusion and structural relaxation of penetrants. J. Chem. Phys. 2023, 159, 014904. [Google Scholar] [CrossRef]
- Chen, S.B. Dissipative Particle Dynamics simulation of nanoparticle diffusion in a crosslinked polymer network. J. Phys. Chem. B 2022, 126, 7184–7191. [Google Scholar] [CrossRef]
- Kurzidim, J.; Coslovich, D.; Kahl, G. Single-particle and collective slow dynamics of colloids in porous confinement. Phys. Rev. Lett. 2009, 103, 138303. [Google Scholar] [CrossRef]
- Cho, H.W.; Kwon, G.; Sung, B.J.; Yethiraj, A. Effect of polydispersity on diffusion in random obstacle matrices. Phys. Rev. Lett. 2012, 2012. 109, 155901. [Google Scholar] [CrossRef]
- Skinner, T.O.E.; Schnyder, S.K.; Aart, D.G.A.L.; Horbach, J.; Dullens, R.P.A. Localization dynamics of fluids in random confinement. Phys. Rev. Lett. 2013, 111, 128301. [Google Scholar] [CrossRef]
- Lin, E.; You, X.; Kriegel, R.M.; Moffitt, R.D.; Batra, R.C. Interdiffusion of small molecules into a glassy polymer film via coarse-grained molecular dynamics simulations. Polymer 2017, 115, 273–284. [Google Scholar] [CrossRef]
- Samanta, N.; Chakrabarti, R. Tracer diffusion in a sea of polymers with binding zones: Mobile vs. frozen traps. Soft Matter 2016, 12, 8554–8563. [Google Scholar] [CrossRef] [PubMed]
- Sung, B.J.; Yethiraj, A. The effect of matrix structure on the diffusion of fluids in porous media. J. Chem. Phys. 2008, 128, 054702. [Google Scholar] [CrossRef]
- Elder, R.M.; Saylor, D.M. Relations between dynamic localization and solute diffusion in polymers. J. Phys. Chem. B 2021, 125, 9372–9383. [Google Scholar] [CrossRef] [PubMed]
- Saylor, D.M.; Jawahery, S.; Silverstein, J.S.; Forrey, C. Relationship between solute localization and diffusion in a dynamically constrained polymer system. J. Chem. Phys. 2016, 145, 031106. [Google Scholar] [CrossRef]
- Zhang, K.; Kumar, S.K. Molecular simulations of solute transport in polymer melts. ACS Macro Lett. 2017, 6, 864–868. [Google Scholar] [CrossRef]
- Zhang, R.; Schweizer, K. Statistical mechanical theory of penetrant diffusion in polymer melts and glasses. Macromolecules 2016, 49, 5727–5739. [Google Scholar] [CrossRef]
- Müller-Plathe, F. Diffusion of penetrants in amorphous polymers: A Molecular Dynamics study. J. Chem. Phys. 1991, 94, 3192–3199. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Chiu, C.C. Solute diffusivity and local free volume in cross-linked polymer network: Implication of optimizing the conductivity of polymer electrolyte. Polymers 2022, 14, 2061. [Google Scholar] [CrossRef]
- Quesada-Pérez, M.; Martín-Molina, A. Solute diffusion in gels: Thirty years of simulations. Adv. Colloid Interface Sci. 2021, 287, 102320. [Google Scholar] [CrossRef]
- Quesada-Pérez, M.; Maroto-Centeno, J.-A.; Ramos-Tejada, M.; Martín-Molina, A. Coarse-grained simulations of solute diffusion in crosslinked flexible hydrogels. Macromolecules 2022, 55, 1495–1504. [Google Scholar] [CrossRef]
- Cai, L.-H.; Panyukov, S.; Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 2011, 44, 7853–7863. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.-H.; Panyukov, S.; Rubinstein, M. Hopping diffusion of nanoparticles in polymer matrices. Macromolecules 2015, 48, 847–862. [Google Scholar] [CrossRef] [PubMed]
- Dürr, O.; Volz, T.; Dieterich, W.; Nitzan, A. Dynamic percolation theory for particle diffusion in a polymer network. J. Chem. Phys. 2002, 117, 441–447. [Google Scholar] [CrossRef]
- Pakula, T. Cooperative relaxations in condensed macromolecular systems. 1. A model for computer simulation. Macromolecules 1987, 20, 679–682. [Google Scholar] [CrossRef]
- Pakula, T.; Geyler, S. Cooperative relaxations in condensed macromolecular systems. 2. Computer simulation of self-diffusion of linear chains. Macromolecules 1987, 20, 2909–2914. [Google Scholar] [CrossRef]
- Geyler, S.; Pakula, T.; Reiter, J. Monte Carlo simulation of dense polymer systems on a lattice. J. Chem. Phys. 1990, 92, 2676–2680. [Google Scholar] [CrossRef]
- Polanowski, P.; Pakula, T. Studies of polymer conformation and dynamics in two dimensions using simulations based on the Dynamic Lattice Liquid (DLL) model. J. Chem. Phys. 2022, 117, 4022–4029. [Google Scholar] [CrossRef]
- Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Modeling of branching and gelation in living copolymerization of monomer and divinyl cross-linker using dynamic lattice liquid model (DLL) and Flory–Stockmayer model. Polymer 2010, 51, 6084–6092. [Google Scholar] [CrossRef]
- Polanowski, P.; Jeszka, J.K.; Li, W.; Matyjaszewski, K. Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: Modeling using dynamic lattice liquid model (DLL) and Flory–Stockmayer (FS) model. Polymer 2011, 52, 5092–5101. [Google Scholar] [CrossRef]
- Polanowski, P.; Gao, H.; Matyjaszewski, K. Gelation in living copolymerization of monomer and divinyl cross-linker: Comparison of ATRP experiments with Monte Carlo simulations. Macromolecules 2009, 42, 5925–5932. [Google Scholar]
- Pietrasik, J.; Budzałek, K.K.; Zhang, Y.; Hałagan, K.; Kozanecki, M. Macromolecular templates for synthesis of inorganic Nanoparticles. In Reversible Deactivation Radical Polymerization: From Mechanisms to Materials and Applications; Matyjaszewski, K., Gao, H., Sumerlin, B.S., Tsarevsky, N.V., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2018; Volume 1285, Chapter 10; pp. 169–200. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hałagan, K.; Duniec, P.; Kozanecki, M.; Sikorski, A. The Influence of Local Constraints on Solvent Motion in Polymer Materials. Materials 2024, 17, 4711. https://doi.org/10.3390/ma17194711
Hałagan K, Duniec P, Kozanecki M, Sikorski A. The Influence of Local Constraints on Solvent Motion in Polymer Materials. Materials. 2024; 17(19):4711. https://doi.org/10.3390/ma17194711
Chicago/Turabian StyleHałagan, Krzysztof, Przemysław Duniec, Marcin Kozanecki, and Andrzej Sikorski. 2024. "The Influence of Local Constraints on Solvent Motion in Polymer Materials" Materials 17, no. 19: 4711. https://doi.org/10.3390/ma17194711
APA StyleHałagan, K., Duniec, P., Kozanecki, M., & Sikorski, A. (2024). The Influence of Local Constraints on Solvent Motion in Polymer Materials. Materials, 17(19), 4711. https://doi.org/10.3390/ma17194711