Crystal Structures and Piezoelectric Properties of Quenched and Slowly-Cooled BiFeO3-BaTiO3 Ceramics
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring Lead-Free Piezoelectric Ceramics into Application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Wu, J.; Wang, J.; Pennycook, S.J. Microstructural Origins of High Piezoelectric Performance: A Pathway to Practical Lead-Free Materials. Adv. Funct. Mater. 2019, 29, 1902911. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Gao, J.; Zhou, Z.; Wang, H.; Wang, K. High-Performance Lead-Free Piezoelectrics with Local Structural Heterogeneity. Energy Environ. Sci. 2018, 11, 3531. [Google Scholar] [CrossRef]
- Li, J.F.; Wang, K.; Zhu, F.Y.; Cheng, L.Q.; Yao, F.Z. (K,Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges. J. Am. Ceram. Soc. 2013, 96, 3677. [Google Scholar] [CrossRef]
- Wang, D.; Wang, G.; Murakami, S.; Fan, Z.; Feteira, A.; Zhou, D.; Sun, S.; Zhao, Q.; Reaney, I.M. BiFeO3-BaTiO3: A New Generation of Lead-Free Electroceramics. J. Adv. Dielectr. 2018, 8, 1830004. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, D.J.; Park, J.S.; Kim, S.W.; Song, T.K.; Kim, M.H.; Kim, W.J.; Do, D.; Jeong, I.K. High-Performance Lead-Free Piezoceramics with High Curie Temperatures. Adv. Mater. 2015, 27, 6976. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, J.; Guo, J.; Cheng, Z.; Wang, J.; Liu, H.; Zhang, S. Excellent Thermal Stability and Aging Behaviors in BiFeO3-BaTiO3 Piezoelectric Ceramics with Rhombohedral Phase. J. Am. Ceram. Soc. 2020, 103, 374–381. [Google Scholar] [CrossRef]
- Li, Q.; Wei, J.; Tu, T.; Cheng, J.; Chen, J. Remarkable Piezoelectricity and Stable High-Temperature Dielectric Properties of Quenched BiFeO3–BaTiO3 Ceramics. J. Am. Ceram. Soc. 2017, 100, 5573–5583. [Google Scholar] [CrossRef]
- Murakami, S.; Ahmed, N.T.A.F.; Wang, D.; Feteira, A.; Sinclair, D.C.; Reaney, I.M. Optimising Dopants and Properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) Lead-Free BaTiO3-BiFeO3 Based Ceramics for Actuator Applications. J. Eur. Ceram. Soc. 2018, 38, 4220–4231. [Google Scholar] [CrossRef]
- Kumar, M.M.; Srinivas, A.; Suryanarayana, S.V. Structure Property Relations in BiFeO3/BaTiO3 Solid Solutions. J. Appl. Phys. 2000, 87, 855–862. [Google Scholar] [CrossRef]
- Leontsev, S.O.; Eitel, R.E. Dielectric and Piezoelectric Properties in Mn-Modified (1−x)BiFeO3–xBaTiO3 Ceramics. J. Am. Ceram. Soc. 2009, 92, 2957–2961. [Google Scholar] [CrossRef]
- Kim, S.; Khanal, G.P.; Nam, H.-W.; Fujii, I.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Structural and Electrical Characteristics of Potential Candidate Lead-Free BiFeO3-BaTiO3 Piezoelectric Ceramics. J. Appl. Phys. 2017, 122, 164105. [Google Scholar] [CrossRef]
- Karpinsky, D.V.; Silibin, M.V.; Trukhanov, S.V.; Trukhanov, A.V.; Zhaludkevich, A.L.; Latushka, S.I.; Zhaludkevich, D.V.; Khomchenko, V.A.; Alikin, D.O.; Abramov, A.S.; et al. Peculiarities of the Crystal Structure Evolution of BiFeO3–BaTiO3 Ceramics across Structural Phase Transitions. Nanomaterials 2020, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Karpinsky, D.V.; Silibin, M.V.; Trukhanov, A.V.; Zhaludkevich, A.L.; Latushka, S.I.; Zhaludkevich, D.V.; Sikolenko, V.A.; Khomchenko, V.A. Evolution of Crystal Structure of Ba and Ti Co-Doped BiFeO3 Ceramics at the Morphotropic Phase Boundary. J. Alloys Compd. 2019, 803, 1136–1140. [Google Scholar] [CrossRef]
- Kang, F.; Zhang, L.; Huang, B.; Mao, P.; Wang, Z.; Sun, Q.; Wang, J.; Hu, D. Enhanced Electromechanical Properties of SrTiO3-BiFeO3-BaTiO3 Ceramics via Relaxor Behavior and Phase Boundary Design. J. Eur. Ceram. Soc. 2020, 40, 1198–1204. [Google Scholar] [CrossRef]
- Calisir, I.; Hall, D.A. Chemical Heterogeneity and Approaches to Its Control in BiFeO3–BaTiO3 Lead-Free Ferroelectrics. J. Mater. Chem. C 2018, 6, 134–136. [Google Scholar] [CrossRef]
- Calisir, I.; Kleppe, A.K.; Feteira, A.; Hall, D.A. Quenching-Assisted Actuation Mechanisms in Core–Shell Structured BiFeO3–BaTiO3 Piezoceramics. J. Mater. Chem. C 2019, 7, 10218–10230. [Google Scholar] [CrossRef]
- Wang, G.; Fan, Z.; Murakami, S.; Lu, Z.; Hall, D.; Sinclair, D.; Feteira, A.; Tan, X.; Jones, J.; Kleppe, A.K.; et al. Origin of the Large Electrostrain in BiFeO3-BaTiO3 Based Lead-Free Ceramics. J. Mater. Chem. A 2019, 7, 21254. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, J. Quenched Bismuth Ferrite-Barium Titanate Lead-Free Piezoelectric Ceramics. J. Alloys Compd. 2016, 676, 505–512. [Google Scholar] [CrossRef]
- Go, S.-H.; Kim, K.S.; Kim, J.S.; Cheon, C.I. Effects of Attrition Milling on the Microstructure and Piezoelectric Properties of BiFeO3-BaTiO3 Ceramics. J. Korean Ceram. Soc. 2023, 60, 669–678. [Google Scholar] [CrossRef]
- Kim, K.S.; Choi, Y.R.; Chae, K.W.; Kim, J.S.; Cheon, C.I. Low Temperature Sintering and Enhanced Piezoelectric Properties of BiFeO3-BaTiO3 Ceramics by Homogeneous Calcination. Ceram. Int. 2024, 50, 32447–32456. [Google Scholar] [CrossRef]
- Gotardo, R.A.M.; Viana, D.S.F.; Olzon-Dionysio, M.; Souza, S.D.; Garcia, D.; Eiras, J.A.; Alves, M.F.S.; Cótica, L.F.; Santos, I.A.; Coelho, A.A. Ferroic States and Phase Coexistence in BiFeO3-BaTiO3 Solid Solutions. J. Appl. Phys. 2012, 112, 104112. [Google Scholar] [CrossRef]
- Zhu, L.-F.; Lei, X.-W.; Zhao, L.; Hussain, M.I.; Zhao, G.-Z.; Zhang, B.-P. Phase Structure and Energy Storage Performance for BiFeO3–BaTiO3 Based Lead-Free Ferroelectric Ceramics. Ceram. Int. 2019, 45, 20266–20275. [Google Scholar] [CrossRef]
- Fujii, I.; Mitsui, R.; Nakashima, K.; Kumada, N.; Shimada, M.; Watanabe, T.; Hayashi, J.; Yabuta, H.; Kubota, M.; Fukui, T.; et al. Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 Ceramics. Jpn. J. Appl. Phys. 2011, 50, 09ND07. [Google Scholar] [CrossRef]
- Kim, D.S.; Cheon, C.I.; Lee, S.S.; Kim, J.S. Effect of Cooling Rate on Phase Transitions and Ferroelectric Properties in 0.75BiFeO3-0.25BaTiO3 Ceramics. Appl. Phys. Lett. 2016, 109, 202902. [Google Scholar] [CrossRef]
- Malik, R.A.; Hussain, A.; Song, T.K.; Kim, W.-J.; Ahmed, R.; Sung, Y.S.; Kim, M.-H. Enhanced Electromechanical Properties of (1-x)BiFeO3–BaTiO3–xLiNbO3 Ceramics by Quenching Process. Ceram. Int. 2017, 43, S198–S203. [Google Scholar] [CrossRef]
- Kim, S.; Khanal, G.P.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Revealing the Role of Heat Treatment in Enhancement of Electrical Properties of Lead-Free Piezoelectric Ceramics. J. Appl. Phys. 2017, 122, 014103. [Google Scholar] [CrossRef]
- Maqbool, A.; Malik, R.A.; Hussain, A.; Akram, F.; Rafiq, M.A.; Saleem, M.; Khalid, F.A.; Song, T.-K.; Kim, W.-J.; Kim, M.-H. Evolution of Ferroelectric and Piezoelectric Response by Heat Treatment in Pseudocubic BiFeO3–BaTiO3 Ceramics. J. Electroceram. 2018, 41, 99–104. [Google Scholar] [CrossRef]
- Wang, D.; Fan, Z.; Li, W.; Zhou, D.; Feteira, A.; Wang, G.; Murakami, S.; Sun, S.; Zhao, Q.; Tan, X.; et al. High Energy Storage Density and Large Strain in Bi(Zn2/3Nb1/3)O3-Doped BiFeO3–BaTiO3 Ceramics. ACS Appl. Energy Mater. 2018, 1, 4403–4412. [Google Scholar] [CrossRef]
- Murakami, S.; Wang, D.; Mostaed, A.; Khesro, A.; Feteira, A.; Sinclair, D.C.; Fan, Z.; Tan, X.; Reaney, I.M. High Strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 Lead-Free Piezoelectric Ceramics and Multilayers. J. Am. Ceram. Soc. 2018, 101, 5428–5442. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, J.; Xiong, P.; Huang, W.; Song, J.; Yin, L.; Tong, P.; Zhu, X.; Sun, Y. The Effects of Quenching on Electrical Properties, and Leakage Behaviors of 0.67BiFeO3–0.33BaTiO3 Solid Solutions. J. Mater. Sci. Mater. Electron. 2018, 29, 7311–7317. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, D.J.; Choi, H.I.; Kim, M.-H.; Song, T.K.; Kim, W.-J.; Do, D. Thermal Quenching Effects on the Ferroelectric and Piezoelectric Properties of BiFeO3–BaTiO3 Ceramics. ACS Appl. Electron. Mater. 2019, 1, 1772–1780. [Google Scholar] [CrossRef]
- Calisir, I.; Amirov, A.A.; Kleppe, A.K.; Hall, D. Optimisation of Functional Properties in Lead-Free BiFeO3–BaTiO3 Ceramics through La3+ Substitution Strategy. J. Mater. Chem. A 2018, 6, 5378–5397. [Google Scholar] [CrossRef]
- Wang, B.; Fu, C.; Liu, X.; Xie, B.; Hall, D.A. Microchemical Homogeneity and Quenching-Induced Property Enhancement in BiFeO3–BaTiO3 Ceramics. Open Ceram. 2023, 13, 100322. [Google Scholar] [CrossRef]
- Bai, H.; Li, J.; Hong, Y.; Zhou, Z. Enhanced Ferroelectricity and Magnetism of Quenched (1-x)BiFeO3-xBaTiO3 Ceramics. J. Adv. Ceram. 2020, 9, 7–12. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, L.; Zhang, B.-P.; Wang, K.-K. Lead-Free 0.7BiFeO3-0.3BaTiO3 High-Temperature Piezoelectric Ceramics: Nano-BaTiO3 Raw Powder Leading to a Distinct Reaction Path and Enhanced Electrical Properties. Ceram. Int. 2019, 45, 10438–10447. [Google Scholar] [CrossRef]
- Kim, S.; Nam, H.; Calisir, I. Lead-Free BiFeO3-Based Piezoelectrics: A Review of Controversial Issues and Current Research State. Materials 2022, 15, 4388. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Lee, J.-H.; Oak, M.-A.; Choi, H.J.; Son, J.Y.; Jang, H.M. Rhombohedral–Orthorhombic Morphotropic Phase Boundary in BiFeO3-Based Multiferroics: First-Principles Prediction. J. Mater. Chem. 2012, 22, 1667. [Google Scholar] [CrossRef]
- Dolgos, M.R.; Adem, U.; Manjon-Sanz, A.; Wan, X.; Comyn, T.P.; Stevenson, T.; Bennett, J.; Bell, A.J.; Tran, T.T.; Halasyamani, P.S.; et al. Perovskite B-Site Compositional Control of [110]p Polar Displacement Coupling in an Ambient-Pressure-Stable Bismuth-Based Ferroelectric. Angew. Chem. Int. Ed. 2012, 51, 10770–10775. [Google Scholar] [CrossRef]
- Khesro, A.; Boston, R.; Sterianou, I.; Sinclair, D.C.; Reaney, I.M. Phase Transitions, Domain Structure, and Pseudosymmetry in La- and Ti-doped BiFeO3. J. Appl. Phys. 2016, 119, 054101. [Google Scholar] [CrossRef]
- Karimi, S.; Reaney, I.M.; Han, Y.; Pokorny, J.; Sterianou, I. Crystal Chemistry and Domain Structure of Rare-Earth Doped BiFeO3 Ceramics. J. Mater. Sci. 2009, 44, 5102–5112. [Google Scholar] [CrossRef]
- Troyanchuk, I.O.; Bushinsky, M.V.; Karpinsky, D.V.; Mantytskaya, O.S.; Fedotova, V.V.; Prochnenko, O.I. Structural Transformations and Magnetic Properties of Bi1–xLnxFeO3 (Ln = La, Nd, Eu) Multiferroics. Phys. Status Solidi B 2009, 246, 1901–1907. [Google Scholar] [CrossRef]
- Song, A.; Tang, Y.-C.; Li, H.; Wang, N.; Zhao, L.; Pei, J.; Zhang, B.-P. Enhanced Piezoelectricity in 0.7BiFeO3-0.3BaTiO3 Lead-Free Ceramics: Distinct Effect of Poling Engineering. J. Mater. 2023, 9, 971–979. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, W.; Zhang, S. Flexoelectric Nano-Generator: Materials, Structures and Devices. Nano Energy 2013, 2, 1079–1092. [Google Scholar] [CrossRef]
- Yasui, K.; Itasaka, H.; Mimura, K.; Kato, K. Coexistence of Flexo- and Ferro-Electric Effects in an Ordered Assembly of BaTiO3 Nanocubes. Nanomaterials 2022, 12, 188. [Google Scholar] [CrossRef]
- Catalan, G.; Sinnamon, L.J.; Gregg, J.M. The Effect of Flexoelectricity on the Dielectric Properties of Inhomogeneously Strained Ferroelectric Thin Films. J. Phys. Condens. Matter 2004, 16, 2253–2264. [Google Scholar] [CrossRef]
- Ma, W.; Cross, L.E. Flexoelectric Effect in Ceramic Lead Zirconate Titanate. Appl. Phys. Lett. 2005, 86, 072905. [Google Scholar] [CrossRef]
- Ma, W.; Cross, L.E. Strain-Gradient-Induced Electric Polarization in Lead Zirconate Titanate Ceramics. Appl. Phys. Lett. 2003, 82, 3293–3295. [Google Scholar] [CrossRef]
- Wang, L.; Liang, R.; Zhou, Z.; Li, M.; Gu, M.; Wang, P.; Dong, X. Electrical Conduction Mechanisms and Effect of Atmosphere Annealing on the Electrical Properties of BiFeO3-BaTiO3 Ceramics. J. Eur. Ceram. Soc. 2019, 39, 4727–4734. [Google Scholar] [CrossRef]
Phase | Fraction | Lattice Parameters | R Factors | ||||||
---|---|---|---|---|---|---|---|---|---|
(SG) | a (Å) | b (Å) | c (Å) | Rp | Rwp | Rexp | Rb | Rf | |
R3c | 0.41 | 5.6111 (15) | 5.6111 (15) | 13.7452 (53) | 8.53 | 11.22 | 2.54 | 5.81 | 4.95 |
Pmm | 0.59 | 3.9624 (5) | 3.9624 (5) | 3.9624 (5) | 5.85 | 4.12 | |||
R3m | 0.36 | 5.6027 (27) | 5.6027 (27) | 6.8579 (20) | 7.55 | 9.64 | 2.54 | 5.90 | 4.93 |
Pmm | 0.64 | 3.9605 (4) | 3.9605 (4) | 3.9605 (4) | 5.38 | 3.74 | |||
R3c | 0.37 | 5.6006 (18) | 5.6006 (18) | 13.7248 (98) | 7.51 | 9.77 | 2.54 | 6.98 | 6.35 |
P4mm | 0.63 | 3.9603 (3) | 3.9603 (3) | 3.9603 (3) | 6.91 | 5.52 | |||
R3m | 0.34 | 5.6222 (10) | 5.6222 (10) | 6.8569 (11) | 8.16 | 10.66 | 2.54 | 5.60 | 4.94 |
P4mm | 0.66 | 3.9576 (6) | 3.9576 (6) | 3.9617 (5) | 5.26 | 4.10 | |||
R3c | 0.20 | 5.6020 (11) | 5.6020 (11) | 13.7495 (51) | 5.77 | 7.45 | 2.54 | 5.17 | 3.35 |
Pmc21 | 0.80 | 7.9193 (5) | 5.5981 (4) | 5.6049 (6) | 5.00 | 3.58 | |||
R3m | 0.35 | 5.6009 (7) | 5.6009 (7) | 6.8717 (30) | 5.51 | 7.25 | 2.53 | 4.43 | 3.51 |
Pmc21 | 0.65 | 7.9190 (5) | 5.5968 (4) | 5.6029 (14) | 4.25 | 3.75 | |||
R3c | 0.23 | 5.6024 (9) | 5.6024 (9) | 13.7442 (77) | 5.78 | 7.44 | 2.54 | 5.15 | 3.63 |
Pbnm | 0.77 | 5.5983 (4) | 7.9202 (5) | 5.6051 (10) | 5.13 | 3.57 | |||
R3m | 0.41 | 5.6018 (5) | 5.6018 (5) | 6.8743 (23) | 5.47 | 7.23 | 2.54 | 3.77 | 3.38 |
Pbnm | 0.59 | 5.5988 (4) | 7.9210 (5) | 5.6028 (14) | 3.87 | 3.52 |
Phase | Fraction | Lattice Parameters | R Factors | ||||||
---|---|---|---|---|---|---|---|---|---|
(SG) | a (Å) | b (Å) | c (Å) | Rp | Rwp | Rexp | Rb | Rf | |
R3c | 0.42 | 5.5978 (20) | 5.5978 (20) | 13.7985 (35) | 5.47 | 7.09 | 2.40 | 3.60 | 2.16 |
Pm3m | 0.58 | 3.9630 (4) | 3.9630 (4) | 3.9630 (4) | 2.81 | 1.96 | |||
R3m | 0.37 | 5.6029 (19) | 5.6029 (19) | 6.8879 (15) | 5.56 | 7.24 | 2.41 | 2.85 | 2.34 |
Pmm | 0.63 | 3.9599 (3) | 3.9599 (3) | 3.9599 (3) | 2.79 | 1.91 | |||
R3c | 0.31 | 5.5966 (27) | 5.5966 (27) | 13.7839 (35) | 5.47 | 7.09 | 2.40 | 2.58 | 2.16 |
P4mm | 0.69 | 3.9597 (6) | 3.9597 (6) | 3.9641 (12) | 2.81 | 1.96 | |||
R3m | 0.35 | 5.6012 (15) | 5.6012 (15) | 6.8887 (13) | 5.46 | 7.27 | 2.40 | 3.01 | 2.91 |
P4mm | 0.65 | 3.9597 (19) | 3.9597 (19) | 3.9596 (40) | 3.06 | 2.63 | |||
R3c | 0.21 | 5.6104 (11) | 5.6104 (11) | 13.7321 (122) | 4.55 | 6.05 | 2.40 | 2.99 | 2.38 |
Pmc21 | 0.79 | 7.9190 (7) | 5.5915 (5) | 5.6150 (15) | 3.01 | 2.28 | |||
R3m | 0.29 | 5.6079 (9) | 5.6079 (9) | 6.8795 (35) | 4.54 | 5.99 | 2.40 | 2.55 | 2.20 |
Pmc21 | 0.71 | 7.9205 (8) | 5.5908 (6) | 5.6105 (15) | 2.62 | 2.17 | |||
R3c | 0.20 | 5.6109 (12) | 5.6109 (12) | 13.7635 (42) | 4.41 | 5.91 | 2.40 | 2.44 | 2.37 |
Pbnm | 0.80 | 5.5920 (6) | 7.9206 (7) | 5.61008 (9) | 2.37 | 2.28 | |||
R3m | 0.21 | 5.6089 (12) | 5.6089 (12) | 6.8811 (21) | 4.29 | 5.83 | 2.40 | 2.61 | 2.01 |
Pbnm | 0.79 | 5.5921 (5) | 7.9206 (7) | 5.6116 (8) | 2.41 | 1.90 |
Sample | εr | tan δ | d33 (pC/N) | kp | θmax (°) |
---|---|---|---|---|---|
AQ | 780 | 0.053 | 191 | 0.365 | 57.2 |
SC | 759 | 0.057 | 65 | 0.204 | −43.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, S.H.; Kim, K.S.; Choi, Y.R.; Kim, J.-S.; Cheon, C.I. Crystal Structures and Piezoelectric Properties of Quenched and Slowly-Cooled BiFeO3-BaTiO3 Ceramics. Materials 2024, 17, 4492. https://doi.org/10.3390/ma17184492
Go SH, Kim KS, Choi YR, Kim J-S, Cheon CI. Crystal Structures and Piezoelectric Properties of Quenched and Slowly-Cooled BiFeO3-BaTiO3 Ceramics. Materials. 2024; 17(18):4492. https://doi.org/10.3390/ma17184492
Chicago/Turabian StyleGo, Su Hwan, Kang San Kim, Ye Rok Choi, Jeong-Seog Kim, and Chae Il Cheon. 2024. "Crystal Structures and Piezoelectric Properties of Quenched and Slowly-Cooled BiFeO3-BaTiO3 Ceramics" Materials 17, no. 18: 4492. https://doi.org/10.3390/ma17184492
APA StyleGo, S. H., Kim, K. S., Choi, Y. R., Kim, J.-S., & Cheon, C. I. (2024). Crystal Structures and Piezoelectric Properties of Quenched and Slowly-Cooled BiFeO3-BaTiO3 Ceramics. Materials, 17(18), 4492. https://doi.org/10.3390/ma17184492