High Purity, Crystallinity and Electromechanical Sensitivity of Lead-Free (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 Synthesized Using an EDTA/glycerol Modified Pechini Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sekhar, M.C.; Veena, E.; Kumar, N.S.; Naidu, K.C.B.; Mallikarjuna, A.; Basha, D.B. A Review on Piezoelectric Materials and Their Applications. Cryst. Res. Technol. 2023, 58, 2200130. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large Piezoelectric Effect in Pb-Free Ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A.; Rödel, J. BaTiO3-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives. Appl. Phys. Rev. 2017, 4, 41305. [Google Scholar] [CrossRef]
- Gao, J.; Xue, D.; Liu, W.; Zhou, C.; Ren, X. Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications. Actuators 2017, 6, 24. [Google Scholar] [CrossRef]
- Buatip, N.; Dhanunjaya, M.; Amonpattaratkit, P.; Pomyai, P.; Sonklin, T.; Reichmann, K.; Janphaung, P.; Pojprapai, S. Comparison of Conventional and Reactive Sintering Techniques for Lead–Free BCZT Ferroelectric Ceramics. Radiat. Phys. Chem. 2020, 172, 108770. [Google Scholar] [CrossRef]
- Shi, S.; Hashimoto, H.; Sekino, T. Optimizing the Piezoelectric Properties of Ba0.85Ca0.15Zr0.10Ti0.90O3·lead-Free Ceramics via Two-Step Sintering. Ceram. Int. 2023, 49, 12293–12300. [Google Scholar] [CrossRef]
- Ji, X.; Wang, C.; Harumoto, T.; Zhang, S.; Tu, R.; Shen, Q.; Shi, J. Structure and Electrical Properties of BCZT Ceramics Derived from Microwave-Assisted Sol–Gel-Hydrothermal Synthesized Powders. Sci. Rep. 2020, 10, 20352. [Google Scholar] [CrossRef]
- Ji, X.; Peng, Q.; Wang, C.; Shi, J. Structure and Sintering Characteristics of Rapid Synthesizing BCZT Powders by Microwave Assisted Sol–Gel-Hydrothermal Method at Low Temperature. J. Mater. Sci. Mater. Electron. 2023, 34, 28. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The Evolution of “sol-Gel” Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef]
- Kumar, A.S.; Lekha, C.S.C.; Vivek, S.; Anantharaman, M.R.; Saravanan, K.V.; Nair, S.S. Giant Voltage Generating Microcantilevers Based on Ba0.85Ca0.15Zr0.1Ti0.9O3 and Co76Fe14Ni4Si5B for next-Generation Energy Harvesters. Scr. Mater. 2020, 180, 11–15. [Google Scholar] [CrossRef]
- Kurajica, S. A Brief Review on the Use of Chelation Agents in Sol-Gel Synthesis with Emphasis on β-Diketones and β-Ketoesters. Chem. Biochem. Eng. Q. 2019, 33, 295–301. [Google Scholar] [CrossRef]
- Motta, M.; Deimling, C.V.; Saeki, M.J.; Lisboa-Filho, P.N. Chelating Agent Effects in the Synthesis of Mesoscopic-Size Superconducting Particles. J. Sol-Gel Sci. Technol. 2008, 46, 201–207. [Google Scholar] [CrossRef]
- Ianculescu, A.; Berger, D.; Matei, C.; Budrugeac, P.; Mitoseriu, L.; Vasile, E. Synthesis of BaTiO3 by Soft Chemistry Routes. J. Electroceram. 2010, 24, 46–50. [Google Scholar] [CrossRef]
- Leth, P.M.; Gregersen, M. Ethylene Glycol Poisoning. Forensic Sci. Int. 2005, 155, 179–184. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Glycerol as a Sustainable Solvent for Green Chemistry. Green Chem. 2010, 12, 1127–1138. [Google Scholar] [CrossRef]
- Henderson, R.K.; Jiménez-González, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s Solvent Selection Guide–Embedding Sustainability into Solvent Selection Starting at Medicinal Chemistry. Green Chem. 2011, 13, 854–862. [Google Scholar] [CrossRef]
- Aziguli, H.; Zhang, T.; Yu, P. Effect of Additive Glycerol on Piezoelectric Properties of Modified Sol-Gel (Ba0.85ca0.15)(Ti0.9zr0.1)O3 Ceramics. Mater. Sci. Forum 2020, 993, 791–798. [Google Scholar] [CrossRef]
- Meeke, T.R. Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 “ANSI/IEEE Standard on Piezoelectricity”. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1996, 43, 717–718. [Google Scholar] [CrossRef]
- Pardo, L.; García, Á.; Schubert, F.; Kynast, A.; Scholehwar, T.; Jacas, A.; Bartolomé, J.F. Determination of the Pic700 Ceramic’s Complex Piezo-Dielectric and Elastic Matrices from Manageable Aspect Ratio Resonators. Materials 2021, 14, 4076. [Google Scholar] [CrossRef]
- Lutterotti, L. Total Pattern Fitting for the Combined Size-Strain-Stress-Texture Determination in Thin Film Diffraction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 334–340. [Google Scholar] [CrossRef]
- Graulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Baraskar, B.G.; Kolekar, Y.D.; Thombare, B.R.; James, A.R.; Kambale, R.C.; Ramana, C.V. Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability. Small 2023, 19, 2300549. [Google Scholar] [CrossRef] [PubMed]
- Jaimeewong, P.; Promsawat, M.; Watcharapasorn, A.; Jiansirisomboon, S. Comparative Study of Properties of BCZT Ceramics Prepared from Conventional and Sol-Gel Auto Combustion Powders. Integr. Ferroelectr. 2016, 175, 25–32. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Chao, X.; Wei, L.; Yang, B.; Wang, D.; Yang, Z. Synthesis, Structure, Dielectric, Piezoelectric, and Energy Storage Performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 Ceramics Prepared by Different Methods. J. Mater. Sci. Mater. Electron. 2016, 27, 5047–5058. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, Y.H.; Zhang, M.; Zhao, N.; Gong, S.; Chen, Q. First-Principles Calculations of the Structural, Electronic and Optical Properties of BaZrxTi1-XO3 (x = 0, 0.25, 0.5, 0.75). Chin. Phys. Lett. 2011, 28, 67101. [Google Scholar] [CrossRef]
- Premkumar, S.; Radhakrishnan, S.; Mathe, V.L. Understanding A and B-Site Engineered Lead-Free Ba(1-X)CaxZryTi(1-y)O3 piezoceramics: A Perspective from DFT. J. Mater. Chem. C 2021, 9, 4248–4259. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Ji, X.; Wang, C.; Luo, W.; Chen, G.; Zhang, S.; Tu, R.; Shen, Q.; Shi, J.; Zhang, L. Effect of Solution Concentration on Low-Temperature Synthesis of BCZT Powders by Sol–Gel-Hydrothermal Method. J. Sol-Gel Sci. Technol. 2020, 94, 205–212. [Google Scholar] [CrossRef]
- Praveen, J.P.; Kumar, K.; James, A.R.; Karthik, T.; Asthana, S.; Das, D. Large Piezoelectric Strain Observed in Sol-Gel Derived BZT-BCT Ceramics. Curr. Appl. Phys. 2014, 14, 396–402. [Google Scholar] [CrossRef]
- Mureddu, M.; Bartolomé, J.F.; Lopez-Esteban, S.; Dore, M.; Enzo, S.; García, Á.; Garroni, S.; Pardo, L. Solid State Processing of BCZT Piezoceramics Using Ultra Low Synthesis and Sintering Temperatures. Materials 2023, 16, 945. [Google Scholar] [CrossRef] [PubMed]
- Amorín, H.; Venet, M.; García, J.E.; Ochoa, D.A.; Ramos, P.; López-Sánchez, J.; Rubio-Zuazo, J.; Castro, A.; Algueró, M. Insights into the Early Size Effects of Lead-Free Piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. Adv. Electron. Mater. 2023, 2300556, 1–12. [Google Scholar] [CrossRef]
BCZTEDTA | Composition (wt.%) | a (Å) | b (Å) | c (Å) | Cryst.Size (Å) | rms |
---|---|---|---|---|---|---|
BCZT (S.G.: P4mm) | 98 | 4.015 | 4.015 | 4.027 | 980 | 4.0 × 10−4 |
CaTiO3 (S.G.: Pbnm) | 2 | 5.400 | 5.457 | 7.654 | 990 | 8.9 × 10−4 |
BCZTCA | Composition (wt.%) | a (Å) | b (Å) | c (Å) | Cryst.Size (Å) | rms |
BCZT (S.G.: P4mm) | 77 | 4.008 | 4.008 | 4.024 | 820 | 3.7 × 10−4 |
ZrO2 (S.G.: P42/nmc) | 23 | 3.621 | 3.621 | 5.001 | 440 | 2.0 × 10−3 |
BCZTEDTA | Composition (wt.%) | a (Å) | b (Å) | c (Å) | Cryst.Size (Å) | rms |
---|---|---|---|---|---|---|
BCZT (S.G.: P4mm) | 100 | 4.003 | 4.003 | 4.015 | >2000 | 6.9 × 10−4 |
BCZTCA | Composition (wt.%) | a (Å) | b (Å) | c (Å) | Cryst.Size (Å) | rms |
BCZT (S.G.: P4mm) | 100 | 4.017 | 4.017 | 4.022 | >2000 | 9.4 × 10−4 |
Properties | |
---|---|
Density (g/cm3) | 5.26 |
d33(pC/N) | 451 (440 after 2 h) |
ℜ2 | 0.9986 |
kp (%) | 40.35 |
Np(kHz·mm) | 2898 |
d′31 (pC/N) | −160 |
Qp(d31) | 113 |
(1010N m−2) | 9.8 |
Qm | 343 |
4790 | |
tan δ | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caggiu, L.; Cau, C.; Mureddu, M.; Enzo, S.; Murgia, F.; Pardo, L.; Lopez-Esteban, S.; Bartolomé, J.F.; Mulas, G.; Orrù, R.; et al. High Purity, Crystallinity and Electromechanical Sensitivity of Lead-Free (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 Synthesized Using an EDTA/glycerol Modified Pechini Method. Materials 2025, 18, 1180. https://doi.org/10.3390/ma18051180
Caggiu L, Cau C, Mureddu M, Enzo S, Murgia F, Pardo L, Lopez-Esteban S, Bartolomé JF, Mulas G, Orrù R, et al. High Purity, Crystallinity and Electromechanical Sensitivity of Lead-Free (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 Synthesized Using an EDTA/glycerol Modified Pechini Method. Materials. 2025; 18(5):1180. https://doi.org/10.3390/ma18051180
Chicago/Turabian StyleCaggiu, Laura, Costantino Cau, Marzia Mureddu, Stefano Enzo, Fabrizio Murgia, Lorena Pardo, Sonia Lopez-Esteban, Jose F. Bartolomé, Gabriele Mulas, Roberto Orrù, and et al. 2025. "High Purity, Crystallinity and Electromechanical Sensitivity of Lead-Free (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 Synthesized Using an EDTA/glycerol Modified Pechini Method" Materials 18, no. 5: 1180. https://doi.org/10.3390/ma18051180
APA StyleCaggiu, L., Cau, C., Mureddu, M., Enzo, S., Murgia, F., Pardo, L., Lopez-Esteban, S., Bartolomé, J. F., Mulas, G., Orrù, R., & Garroni, S. (2025). High Purity, Crystallinity and Electromechanical Sensitivity of Lead-Free (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 Synthesized Using an EDTA/glycerol Modified Pechini Method. Materials, 18(5), 1180. https://doi.org/10.3390/ma18051180