Influence of Process Parameters on Selected Properties of Ti6Al4V Manufacturing via L-PBF Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Powder Analysis
3.2. Porosity Measurement
3.3. Microstructural Analysis
3.4. Microhardness
3.5. Statistical Model
4. Conclusions
- The material porosity for different additive manufacturing process parameters ranges from 0.005% to 1.54%. The highest porosity was obtained using the 11th parameter group (P = 275 W, v = 1210 mm/s, H = 0.12 mm). For these parameters, the energy density per unit volume of material is 63.13 J/mm3.
- The lowest porosity was achieved with the 7th parameter group. The parameter values used in this group were P = 302.5 W, v = 990 mm/s, and H = 0.14 mm. The calculated volumetric energy density is 72.75 J/mm3.
- The analysis indicates that there are only minor differences in energy density between the highest and lowest porosity values. This suggests that the relationship between process parameters and porosity is not strongly influenced by variations in energy density alone. Instead, other factors, such as the interplay between laser power, exposure velocity, and hatching distance, may play a more significant role in determining porosity.
- Using selected images, the material’s microstructure was presented. In most cases, the material’s microstructure is similar, and material defects are caused by gas porosity or lack of fusion of individual grains.
- Hardness measurements of the material showed an average value of 434 ± 18 HV0.5. The material’s hardness does not significantly change with varying additive manufacturing process parameters.
- Using a mathematical model, response maps were generated for selecting additive manufacturing parameters using the SLM technique. Analyzing these maps reveals that a range of parameters ensuring low porosity (beneficial for the material’s strength properties) can be achieved with various combinations of parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahulan, N.; Sharma, S.S.; Rakesh, N.; Sambhu, R. A short review on mechanical properties of SLM titanium alloys based on recent research works. Mater. Today Proc. 2022, 56 Pt 5, A7–A12. [Google Scholar] [CrossRef]
- Kluczyński, J.; Dražan, T.; Joska, Z.; Łuszczek, J.; Kosturek, R.; Jasik, K. Microstructural Investigation of Process Parameters Dedicated to Laser Powder Bed Fusion of AlSi7Mg0.6 Alloy. Materials 2024, 17, 2156. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhai, X.; Wang, K.; Zhang, K.; Wu, D.; Nazir, A.; Jiang, J.; Liao, W.-H. Big data, machine learning, and digital twin assisted additive manufacturing: A review. Mater. Des. 2024, 244, 113086. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, K.S.; Dip, T.M.; Chowdhury, M.F.M.; Debnath, S.R.; Hasan, S.M.M.; Sakib, S.; Saha, T.; Padhye, R.; Houshyar, S. A review on nanomaterial-based additive manufacturing: Dynamics in properties, prospects, and challenges. Prog. Addit. Manuf. 2023, 9, 1197–1224. [Google Scholar] [CrossRef]
- Ramosena, L.A.; Dzogbewu, T.C.; du Preez, W. Direct Metal Laser Sintering of the Ti6Al4V Alloy from a Powder Blend. Materials 2022, 15, 8193. [Google Scholar] [CrossRef]
- Tang, P.; Zhao, X.; Shi, H.; Hu, B.; Ding, J.; Yang, B.; Xu, W. A review of multi-axis additive manufacturing: Potential, opportunity and challenge. Addit. Manuf. 2024, 83, 104075. [Google Scholar] [CrossRef]
- Patel, A.; Taufik, M. Extrusion-Based Technology in Additive Manufacturing: A Comprehensive Review. Arab. J. Sci. Eng. 2024, 49, 1309–1342. [Google Scholar] [CrossRef]
- Paul, A.A.; Aladese, A.D.; Marks, R.S. Additive Manufacturing Applications in Biosensors Technologies. Biosensors 2024, 14, 60. [Google Scholar] [CrossRef]
- Nasrin, T.; Pourkamali-Anaraki, F.; Peterson, A.M. Application of machine learning in polymer additive manufacturing: A review. J. Polym. Sci. 2024, 62, 2639–2669. [Google Scholar] [CrossRef]
- Yasmin, F.; Vafadar, A.; Tolouei-Rad, M. Application of Additive Manufacturing in the Development of Polymeric Bioresorbable Cardiovascular Stents: A Review. Adv. Mater. Technol. 2024, 2024, 2400210. [Google Scholar] [CrossRef]
- Radhika, C.; Shanmugam, R.; Ramoni, M.; Gnanavel, B.K. A review on additive manufacturing for aerospace application. Mater. Res. Express 2024, 11, 022001. [Google Scholar] [CrossRef]
- Morshed-Behbahani, K.; Aliyu, A.; Bishop, D.P.; Nasiri, A. Additive manufacturing of copper-based alloys for high-temperature aerospace applications: A review. Mater. Today Commun. 2024, 38, 108395. [Google Scholar] [CrossRef]
- O’Neill, F.; Mehmanparast, A. A review of additive manufacturing capabilities for potential application in offshore renewable energy structures. Forces Mech. 2024, 14, 100255. [Google Scholar] [CrossRef]
- Yao, L.; Ramesh, A.; Xiao, Z.; Chen, Y.; Zhuang, Q. Multimetal Research in Powder Bed Fusion: A Review. Materials 2023, 16, 4287. [Google Scholar] [CrossRef]
- Lu, D.; Liu, Z.; Wei, X.; Chen, C.; Wang, D. Effect of post-processing methods on the surface quality of Ti6Al4V fabricated by laser powder bed fusion. Front. Mater. 2023, 10, 1126749. [Google Scholar] [CrossRef]
- Lupi, F.; Pacini, A.; Lanzetta, M. Laser powder bed additive manufacturing: A review on the four drivers for an online control. J. Manuf. Process. 2023, 103, 413–429. [Google Scholar] [CrossRef]
- Zul, M.; Ishak@Muhammad, M.; Nasir, R.; Aiman, M.; Quazi, M. Effect of Laser-Textured Surface of Ti6Al4V on Frictional Wear Behavior. Int. J. Automot. Mech. Eng. 2023, 20, 10165–10174. [Google Scholar] [CrossRef]
- Gandreddi, J.P.; Kromanis, A.; Lungevics, J.; Jost, E. Overview of Machinability of Titanium Alloy (Ti6Al4V) and Selection of Machining Parameters. Latv. J. Phys. Tech. Sci. 2023, 60, 52–66. [Google Scholar] [CrossRef]
- Mihalcea, E.; Vergara-Hernández, H.; Jimenez, O.; Olmos, L.; Chávez, J.; Arteaga, D. Design and characterization of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V biomedical bilayer processed by powder metallurgy. Trans. Nonferrous Met. Soc. China 2021, 31, 178–192. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, M.; Zhu, J.; Tu, J.; Jiao, S. Microstructure and Corrosion Resistance of Ti6Al4V Manufactured by Laser Powder Bed Fusion. Metals 2023, 13, 496. [Google Scholar] [CrossRef]
- Airao, J.; Kishore, H.; Nirala, C.K. Comparative analysis of tool wear in micro-milling of wrought and selective laser melted Ti6Al4V. Wear 2023, 523, 204788. [Google Scholar] [CrossRef]
- He, Y.; Ma, Y.; Zhang, W.; Wang, Z. Anisotropic tensile and fatigue properties of laser powder bed fusion Ti6Al4V under high temperature. Eng. Fract. Mech. 2022, 276, 108948. [Google Scholar] [CrossRef]
- He, Y.; Ma, Y.; Zhang, W.; Wang, Z. Effects of build direction on thermal exposure and creep performance of SLM Ti6Al4V titanium alloy. Eng. Fail. Anal. 2022, 135, 106063. [Google Scholar] [CrossRef]
- Baghi, A.D.; Nafisi, S.; Hashemi, R.; Ebendorff-Heidepriem, H.; Ghomashchi, R. A New Approach to Empirical Optimization of Laser Powder Bed Fusion Process for Ti6Al4V Parts. J. Mater. Eng. Perform. 2023, 32, 9472–9488. [Google Scholar] [CrossRef]
- Obeidi, M.A.; Mussatto, A.; Dogu, M.N.; Sreenilayam, S.P.; McCarthy, E.; Ahad, I.U.; Keaveney, S.; Brabazon, D. Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion. Surf. Coat. Technol. 2022, 434, 128179. [Google Scholar] [CrossRef]
- Barricelli, L.; Patriarca, L.; du Plessis, A.; Beretta, S. Orientation-dependent fatigue assessment of Ti6Al4V manufactured by L-PBF: Size of surface features and shielding effect. Int. J. Fatigue 2023, 168, 107401. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Awan, U.S.; Hadavi, E.; Leary, M.; Brandt, M.; Littlefair, G.; O’neil, W.; Gibson, I. A study on surface morphology and tension in laser powder bed fusion of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2020, 111, 2891–2909. [Google Scholar] [CrossRef]
- Meier, B.; Warchomicka, F.; Petrusa, J.; Angerer, P.; Wosik, J.; Kaindl, R.; Petrovic, V.; Waldhauser, W.; Sommitsch, C. Influence of powder production process and properties on material properties of Ti6Al4V manufactured by L-PBF. Int. J. Adv. Manuf. Technol. 2022, 123, 1577–1588. [Google Scholar] [CrossRef]
- Javidrad, H.R.; Salemi, S. Effect of the Volume Energy Density and Heat Treatment on the Defect, Microstructure, and Hardness of L-PBF Inconel 625. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 5880–5891. [Google Scholar] [CrossRef]
- Adegoke, O.; Andersson, J.; Brodin, H.; Pederson, R.; Harlin, P. Influence of laser powder bed fusion process parameters on the microstructure and cracking susceptibility of nickel-based superalloy Alloy 247LC. Results Mater. 2022, 13, 100256. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, C.-T. Design of titanium alloys by additive manufacturing: A critical review. Adv. Powder Mater. 2022, 1, 100014. [Google Scholar] [CrossRef]
- Cottam, R.; Palanisamy, S.; Avdeev, M.; Jarvis, T.; Henry, C.; Cuiuri, D.; Balogh, L.; Rashid, R.A.R. Diffraction line profile analysis of 3D wedge samples of Ti-6Al-4V fabricated using four different additive manufacturing processes. Metals 2019, 9, 60. [Google Scholar] [CrossRef]
- Zochowski, P.; Bajkowski, M.; Grygoruk, R.; Magier, M.; Burian, W.; Pyka, D.; Bocian, M.; Jamroziak, K. Ballistic impact resistance of bulletproof vest inserts containing printed titanium structures. Metals 2021, 11, 225. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, J.; Zhao, T.; Schopphoven, T.; Fu, J.; Gasser, A.; Schleifenbaum, J.H. Laser metal deposition of Ti6Al4V—A brief review. Appl. Sci. 2020, 10, 764. [Google Scholar] [CrossRef]
- Maitra, V.; Shi, J. Manufacturing Letters Predictability Assessment of As-built Hardness of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion-NC-ND License. 2023. Available online: www.sciencedirect.com (accessed on 6 February 2024).
- Karami, K.; Blok, A.; Weber, L.; Ahmadi, S.; Petrov, R.; Nikolic, K.; Borisov, E.; Leeflang, S.; Ayas, C.; Zadpoor, A.; et al. Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: Effect of post-processing on microstructural anisotropy and fatigue behaviour. Addit. Manuf. 2020, 36, 101433. [Google Scholar] [CrossRef]
- Vilardell, A.; Takezawa, A.; du Plessis, A.; Takata, N.; Krakhmalev, P.; Kobashi, M.; Albu, M.; Kothleitner, G.; Yadroitsava, I.; Yadroitsev, I. Mechanical behavior of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu lattice structures manufactured by laser powder bed fusion and designed for implant applications. J. Mech. Behav. Biomed. Mater. 2021, 113, 104130. [Google Scholar] [CrossRef]
- Kaschel, F.R.; Celikin, M.; Dowling, D. Effects of laser power on geometry, microstructure and mechanical properties of printed Ti-6Al-4V parts. J. Mech. Work. Technol. 2019, 278, 116539. [Google Scholar] [CrossRef]
- Nahr, F.; Rasch, M.; Burkhardt, C.; Renner, J.; Baumgärtner, B.; Hausotte, T.; Körner, C.; Steinmann, P.; Mergheim, J.; Schmidt, M.; et al. Geometrical Influence on Material Properties for Ti6Al4V Parts in Powder Bed Fusion. J. Manuf. Mater. Process. 2023, 7, 82. [Google Scholar] [CrossRef]
- Fotovvati, B.; Balasubramanian, M.; Asadi, E. Modeling and optimization approaches of laser-based powder-bed fusion process for Ti-6Al-4V alloy. Coatings 2020, 10, 1104. [Google Scholar] [CrossRef]
- Santos, P.B.; de Castro, V.V.; Baldin, E.K.; Aguzzoli, C.; Longhitano, G.A.; Jardini, A.L.; Lopes, É.S.; de Andrade, A.M.; de Fraga Malfatti, C. Wear Resistance of Plasma Electrolytic Oxidation Coatings on Ti-6Al-4V Eli Alloy Processed by Additive Manufacturing. Metals 2022, 12, 1070. [Google Scholar] [CrossRef]
- Li, H.; Ramezani, M.; Chen, Z.W. Dry sliding wear performance and behaviour of powder bed fusion processed Ti–6Al–4V alloy. Wear 2019, 440–441, 203103. [Google Scholar] [CrossRef]
Element | Ti | Al | V | Fe | O | C | N | H |
---|---|---|---|---|---|---|---|---|
Weight (%) | Bal. | 5.5–6.75 | 3.5–4.5 | <0.3 | <0.2 | <0.1 | <0.05 | <0.015 |
Sample | Power [W] | Layer Thickness [mm] | Exposure Velocity [mm/s] | Hatching Distance [mm] | Energy Density [J/mm3] |
---|---|---|---|---|---|
1 | 302.5 | 0.03 | 1210 | 0.14 | 59.52 |
2 | 275 | 0.03 | 1210 | 0.14 | 54.11 |
3 | 247.5 | 0.03 | 1210 | 0.14 | 48.70 |
4 | 302.5 | 0.03 | 1100 | 0.14 | 65.48 |
5 | 275 | 0.03 | 1100 | 0.14 | 59.52 |
6 | 247.5 | 0.03 | 1100 | 0.14 | 53.57 |
7 | 302.5 | 0.03 | 990 | 0.14 | 72.75 |
8 | 275 | 0.03 | 990 | 0.14 | 66.14 |
9 | 247.5 | 0.03 | 990 | 0.14 | 59.52 |
10 | 302.5 | 0.03 | 1210 | 0.12 | 69.44 |
11 | 275 | 0.03 | 1210 | 0.12 | 63.13 |
12 | 247.5 | 0.03 | 1210 | 0.12 | 56.82 |
13 | 302.5 | 0.03 | 1100 | 0.12 | 76.39 |
14 | 275 | 0.03 | 1100 | 0.12 | 69.44 |
15 | 247.5 | 0.03 | 1100 | 0.12 | 62.50 |
16 | 302.5 | 0.03 | 990 | 0.12 | 84.88 |
17 | 275 | 0.03 | 990 | 0.12 | 77.16 |
18 | 247.5 | 0.03 | 990 | 0.12 | 69.44 |
19 | 302.5 | 0.03 | 1210 | 0.1 | 83.33 |
20 | 275 | 0.03 | 1210 | 0.1 | 75.76 |
21 | 247.5 | 0.03 | 1210 | 0.1 | 68.18 |
22 | 302.5 | 0.03 | 1100 | 0.1 | 91.67 |
23 | 275 | 0.03 | 1100 | 0.1 | 83.33 |
24 | 247.5 | 0.03 | 1100 | 0.1 | 75.00 |
25 | 302.5 | 0.03 | 990 | 0.1 | 101.85 |
26 | 275 | 0.03 | 990 | 0.1 | 92.59 |
27 | 247.5 | 0.03 | 990 | 0.1 | 83.33 |
Sample | Power [W] | Layer Thickness [mm] | Exposure Velocity [mm/s] | Hatching Distance [mm] | Energy Density [J/mm3] | Porosity [%] |
---|---|---|---|---|---|---|
7 | 302.5 | 0.03 | 990 | 0.14 | 72.75 | 0.005 |
11 | 275 | 0.03 | 1210 | 0.12 | 63.13 | 1.54 |
Coefficient | Value | p Value |
---|---|---|
β0 | −23.108 | 0.275574 |
β1 | 0.185 | 0.055769 |
β11 | −0.00032 | 0.043106 |
β2 | −0.026 | 0.277420 |
β22 | 0.000013 | 0.174263 |
β3 | 190.886 | 0.055563 |
β33 | −750.010 | 0.014936 |
β12 | −0.0000055 | 0.859799 |
β13 | −0.019 | 0.912609 |
β23 | −0.005 | 0.902713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluczyński, J.; Sarzyński, B.; Dražan, T.; Łuszczek, J.; Kosturek, R.; Szachogłuchowicz, I. Influence of Process Parameters on Selected Properties of Ti6Al4V Manufacturing via L-PBF Process. Materials 2024, 17, 4384. https://doi.org/10.3390/ma17174384
Kluczyński J, Sarzyński B, Dražan T, Łuszczek J, Kosturek R, Szachogłuchowicz I. Influence of Process Parameters on Selected Properties of Ti6Al4V Manufacturing via L-PBF Process. Materials. 2024; 17(17):4384. https://doi.org/10.3390/ma17174384
Chicago/Turabian StyleKluczyński, Janusz, Bartłomiej Sarzyński, Tomáš Dražan, Jakub Łuszczek, Robert Kosturek, and Ireneusz Szachogłuchowicz. 2024. "Influence of Process Parameters on Selected Properties of Ti6Al4V Manufacturing via L-PBF Process" Materials 17, no. 17: 4384. https://doi.org/10.3390/ma17174384
APA StyleKluczyński, J., Sarzyński, B., Dražan, T., Łuszczek, J., Kosturek, R., & Szachogłuchowicz, I. (2024). Influence of Process Parameters on Selected Properties of Ti6Al4V Manufacturing via L-PBF Process. Materials, 17(17), 4384. https://doi.org/10.3390/ma17174384