Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Welding Experiment
2.3. Analysis Method
3. Results and Discussion
3.1. Impact of Welding Speed on Welded Joints
3.2. Impact of Power on Welded Joints
3.3. Impact of Defocus Distance on Welded Joints
3.4. Impact of Frequency on Welded Joints
3.5. Welding Mechanism of Titanium Alloy and Glass
4. Conclusions
- (1)
- By adjusting the process parameters, appropriate heat input can be controlled. When the laser power is 180 W, welding speed is 3 mm/s, focal offset is 0 mm, and frequency is 10 Hz, the maximum joint strength of the welded component reaches 60.67 N. Suitable process parameters help improve the bonding strength between the glass and metal.
- (2)
- Glass and metal are diffused and infiltrated in the molten pool or directly embedded in each other under the action of laser thermal melting and thermal shock, which is the reason why the two materials can be combined.
- (3)
- Under the action of the laser, a chemical reaction occurred between high-borosilicate glass and the TC4 titanium alloy, producing a new phase Ti5Si3. This indicates that during laser welding, not only mechanical bonding but also chemical bonding reactions occur between the two materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Experiment Number | Welding Speeds | Power | Defocus Distance | Pulse Frequency |
---|---|---|---|---|
1 | 1 mm/s | 150 W | 0 mm | 10 Hz |
2 | 1 mm/s | 180 W | 0 mm | 10 Hz |
3 | 2 mm/s | 150 W | 0 mm | 10 Hz |
4 | 2 mm/s | 180 W | 0 mm | 10 Hz |
5 | 3 mm/s | 150 W | 0 mm | 10 Hz |
6 | 3 mm/s | 180 W | 0 mm | 10 Hz |
7 | 4 mm/s | 150 W | 0 mm | 10 Hz |
8 | 4 mm/s | 180 W | 0 mm | 10 Hz |
9 | 1 mm/s | 180 W | −1.5 mm | 10 Hz |
10 | 1 mm/s | 180 W | 1.5 mm | 10 Hz |
11 | 2 mm/s | 180 W | −1.5 mm | 10 Hz |
12 | 2 mm/s | 180 W | 1.5 mm | 10 Hz |
13 | 3 mm/s | 180 W | −1.5 mm | 10 Hz |
14 | 3 mm/s | 180 W | 1.5 mm | 10 Hz |
15 | 4 mm/s | 180 W | −1.5 mm | 10 Hz |
16 | 4 mm/s | 180 W | 1.5 mm | 10 Hz |
17 | 1 mm/s | 180 W | 0 mm | 5 Hz |
18 | 1 mm/s | 180 W | 0 mm | 15 Hz |
19 | 1 mm/s | 180 W | 0 mm | 20 Hz |
20 | 2 mm/s | 180 W | 0 mm | 5 Hz |
21 | 2 mm/s | 180 W | 0 mm | 15 Hz |
22 | 2 mm/s | 180 W | 0 mm | 20 Hz |
23 | 3 mm/s | 180 W | 0 mm | 5 Hz |
24 | 3 mm/s | 180 W | 0 mm | 15 Hz |
25 | 3 mm/s | 180 W | 0 mm | 20 Hz |
26 | 4 mm/s | 180 W | 0 mm | 5 Hz |
27 | 4 mm/s | 180 W | 0 mm | 15 Hz |
28 | 4 mm/s | 180 W | 0 mm | 20 Hz |
29 | 1 mm/s | 140 W | 0 mm | 10 Hz |
30 | 1 mm/s | 160 W | 0 mm | 10 Hz |
31 | 1 mm/s | 170 W | 0 mm | 10 Hz |
32 | 1 mm/s | 190 W | 0 mm | 10 Hz |
33 | 1 mm/s | 200 W | 0 mm | 10 Hz |
34 | 2 mm/s | 140 W | 0 mm | 10 Hz |
35 | 2 mm/s | 160 W | 0 mm | 10 Hz |
36 | 2 mm/s | 170 W | 0 mm | 10 Hz |
37 | 2 mm/s | 190 W | 0 mm | 10 Hz |
38 | 2 mm/s | 200 W | 0 mm | 10 Hz |
39 | 3 mm/s | 140 W | 0 mm | 10 Hz |
40 | 3 mm/s | 160 W | 0 mm | 10 Hz |
41 | 3 mm/s | 170 W | 0 mm | 10 Hz |
42 | 3 mm/s | 190 W | 0 mm | 10 Hz |
43 | 3 mm/s | 200 W | 0 mm | 10 Hz |
44 | 4 mm/s | 140 W | 0 mm | 10 Hz |
45 | 4 mm/s | 160 W | 0 mm | 10 Hz |
46 | 4 mm/s | 170 W | 0 mm | 10 Hz |
47 | 4 mm/s | 190 W | 0 mm | 10 Hz |
48 | 4 mm/s | 200 W | 0 mm | 10 Hz |
49 | 3 mm/s | 140 W | 0 mm | 5 Hz |
50 | 3 mm/s | 140 W | 0 mm | 10 Hz |
51 | 3 mm/s | 140 W | 0 mm | 15 Hz |
52 | 3 mm/s | 140 W | 0 mm | 20 Hz |
53 | 3 mm/s | 150 W | 0 mm | 5 Hz |
54 | 3 mm/s | 150 W | 0 mm | 15 Hz |
55 | 3 mm/s | 150 W | 0 mm | 20 Hz |
56 | 3 mm/s | 160 W | 0 mm | 5 Hz |
57 | 3 mm/s | 160 W | 0 mm | 10 Hz |
58 | 3 mm/s | 160 W | 0 mm | 15 Hz |
59 | 3 mm/s | 160 W | 0 mm | 20 Hz |
60 | 3 mm/s | 170 W | 0 mm | 5 Hz |
61 | 3 mm/s | 170 W | 0 mm | 10 Hz |
62 | 3 mm/s | 170 W | 0 mm | 15 Hz |
63 | 3 mm/s | 170 W | 0 mm | 20 Hz |
64 | 3 mm/s | 190 W | 0 mm | 5 Hz |
65 | 3 mm/s | 190 W | 0 mm | 10 Hz |
66 | 3 mm/s | 190 W | 0 mm | 15 Hz |
67 | 3 mm/s | 190 W | 0 mm | 20 Hz |
68 | 3 mm/s | 200 W | 0 mm | 5 Hz |
69 | 3 mm/s | 200 W | 0 mm | 10 Hz |
70 | 3 mm/s | 200 W | 0 mm | 15 Hz |
71 | 3 mm/s | 200 W | 0 mm | 20 Hz |
72 | 3 mm/s | 140 W | −1.5 mm | 10 Hz |
73 | 3 mm/s | 140 W | 1.5 mm | 10 Hz |
74 | 3 mm/s | 150 W | −1.5 mm | 10 Hz |
75 | 3 mm/s | 150 W | 1.5 mm | 10 Hz |
76 | 3 mm/s | 160 W | −1.5 mm | 10 Hz |
77 | 3 mm/s | 160 W | 1.5 mm | 10 Hz |
78 | 3 mm/s | 170 W | −1.5 mm | 10 Hz |
79 | 3 mm/s | 170 W | 1.5 mm | 10 Hz |
80 | 3 mm/s | 190 W | −1.5 mm | 10 Hz |
81 | 3 mm/s | 190 W | 1.5 mm | 10 Hz |
82 | 3 mm/s | 200 W | −1.5 mm | 10 Hz |
83 | 3 mm/s | 200 W | 1.5 mm | 10 Hz |
84 | 3 mm/s | 180 W | −1.5 mm | 5 Hz |
85 | 3 mm/s | 180 W | −1.5 mm | 15 Hz |
86 | 3 mm/s | 180 W | −1.5 mm | 20 Hz |
87 | 3 mm/s | 180 W | 1.5 mm | 5 Hz |
88 | 3 mm/s | 180 W | 1.5 mm | 15 Hz |
89 | 3 mm/s | 180 W | 1.5 mm | 20 Hz |
References
- Xue, B.; Yang, Z.; Shi, X.; Zhou, H.; Lu, G.; Xue, Y.; Wu, C. Study on the Lubrication Mechanism of Titanium Alloys with Surface Dimples Filled with Sn-Ag-Cu and TiC under Dry Sliding Friction. J. Mater. Eng. Perform. 2020, 29, 5776–5786. [Google Scholar] [CrossRef]
- Das, A.; Shukla, M. New generation hopeite coating on Ti6Al4V (TC4) by radio frequency magnetron sputtering for prosthetic-orthopaedic implant applications: Synthesis and characterisation. Trans. IMF 2020, 98, 88–96. [Google Scholar] [CrossRef]
- Jiao, F.; Yao, C.L.; Zhao, L.; Qi, F. Research on milling force in ultrasonic assisted end milling of titanium alloy thin-walled parts. Key Eng. Mater. 2018, 764, 252–260. [Google Scholar] [CrossRef]
- Tian, Y.; Li, H.; Liu, W.; Shao, Y. Elaboration of a novel glass-to-metal seal for tubular solar receiver. Optoelectron. Adv. Mater.-Rapid Commun. 2015, 9, 388–393. [Google Scholar]
- Smeacetto, F.; Chrysanthou, A.; Sabato, A.G.; Javed, H.; Pierre, S.D.L.; Salvo, M.; Ferraris, M. Glass-to-metal seals for solid oxide cells at the Politecnico di Torino, an overview. Int. J. Appl. Ceram. Technol. 2022, 19, 1017–1028. [Google Scholar] [CrossRef]
- Lei, D.; Wang, Z.; Li, J. The analysis of residual stress in glass-to-metal seals for solar receiver tube. Mater. Des. 2010, 31, 1813–1820. [Google Scholar] [CrossRef]
- Hélie, D.; Lacroix, F.; Vallée, R. Bonding of optical materials by femtosecond laser welding for aerospace and high power laser applications. In Photonics North 2012; SPIE: St Bellingham, WA, USA, 2012; Volume 8412, pp. 235–241. [Google Scholar]
- Jia, C.; Wiemer, M.; Gessner, T. Direct bonding with on-wafer metal interconnections. Microsyst. Technol. 2006, 12, 391–396. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Z.; Yang, H.; Wang, Y.; Muhetaer, A.; Lei, J.; Huang, C. Effect of universal adhesive and silane pretreatment on bond durability of metal brackets to dental glass ceramics. Eur. J. Oral Sci. 2021, 129, e12772. [Google Scholar] [CrossRef]
- Su, Y.; de Rooij, M.; Grouve, W.; Akkerman, R. The effect of titanium surface treatment on the interfacial strength of titanium–Thermoplastic composite joints. Int. J. Adhes. Adhes. 2017, 72, 98–108. [Google Scholar] [CrossRef]
- Benitez, T.; Gómez, S.Y.; de Oliveira, A.P.N.; Travitzky, N.; Hotza, D. Transparent ceramic and glass-ceramic materials for armor applications. Ceram. Int. 2017, 43, 13031–13046. [Google Scholar] [CrossRef]
- Zhou, L.; Kato, F.; Nakamura, N.; Oshikane, Y.; Nagakubo, A.; Ogi, H. MEMS hydrogen gas sensor with wireless quartz crystal resonator. Sens. Actuators B Chem. 2021, 334, 129651. [Google Scholar] [CrossRef]
- Yi, R.; Chen, C.; Shi, C.; Li, Y.; Li, H.; Ma, Y. Research advances in residual thermal stress of ceramic/metal brazes. Ceram. Int. 2021, 47, 20807–20820. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhou, J.; Shen, X.; Ling, X. Study on vacuum brazing of glass to Kovar® alloy with Cu-Ni-Sn-P. Weld. J. 2012, 91, 237–240. [Google Scholar]
- Chern, T.S.; Tsai, H.L. Wetting and sealing of interface between 7056 Glass and Kovar alloy. Mater. Chem. Phys. 2007, 104, 472–478. [Google Scholar] [CrossRef]
- Lei, D.; Wang, Z.; Li, J.; Li, J.; Wang, Z. Experimental study of glass to metal seals for parabolic trough receivers. Renew. Energy 2012, 48, 85–91. [Google Scholar] [CrossRef]
- Koebel, M.M.; El Hawi, N.; Lu, J.; Gattiker, F.; Neuenschwander, J. Anodic bonding of activated tin solder alloys in the liquid state: A novel large-area hermetic glass sealing method. Sol. Energy Mater. Sol. Cells 2011, 95, 3001–3008. [Google Scholar] [CrossRef]
- Torunbalci, M.M.; Alper, S.E.; Akin, T. Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding. Sens. Actuators A Phys. 2015, 224, 169–176. [Google Scholar] [CrossRef]
- Szesz, E.M.; Lepienski, C.M. Anodic bonding of titanium alloy with bioactive glass. J. Non-Cryst. Solids 2017, 471, 19–27. [Google Scholar] [CrossRef]
- Xiong, D.; Cheng, J.; Li, H.; Deng, W.; Ye, K. Anodic bonding of glass–ceramics to stainless steel coated with intermediate SiO2 layer. Microelectron. Eng. 2010, 87, 1741–1746. [Google Scholar] [CrossRef]
- Ciuca, O.P.; Carter, R.M.; Prangnell, P.B.; Hand, D.P. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds. Mater. Charact. 2016, 120, 53–62. [Google Scholar] [CrossRef]
- Carter, R.M.; Troughton, M.; Chen, J.; Elder, I.; Thomson, R.R.; Daniel Esser, M.J.; Hand, D.P. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy. Appl. Opt. 2017, 56, 4873–4881. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, A.; Ooie, T.; Yano, T.; Katsumura, M. Direct bonding of glass and metal using short pulsed laser. J. Laser Micro/Nanoeng. 2007, 2, 133–136. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, G. Direct welding of glass and metal by 1 kHz femtosecond laser pulses. Appl. Opt. 2015, 54, 8957–8961. [Google Scholar] [CrossRef]
- Zhan, J.; Gao, Y.; Sun, J.; Zhu, W.; Wang, S.; Jiang, L.; Li, X. Mechanism and optimization of femtosecond laser welding fused silica and aluminum. Appl. Surf. Sci. 2023, 640, 158327. [Google Scholar] [CrossRef]
- Feng, Y.; Pan, R.; Zhou, T.; Dong, Z.; Yan, Z.; Wang, Y.; Chen, S. Direct joining of quartz glass and copper by nanosecond laser. Ceram. Int. 2023, 49, 36056–36070. [Google Scholar] [CrossRef]
- Lin, H.K.; Hong, S.Z.; Chung, B.F.; Lin, R.C. Characterization of local laser bonding quartz to anodic aluminum oxide in light emission device. Opt. Quantum Electron. 2017, 49, 7. [Google Scholar] [CrossRef]
- Zhang, M.; Chan, Y.; Chen, C.; Qiu, Z. A new sealing technology for ultra-thin glass to aluminum alloy by laser transmission welding method. Int. J. Adv. Manuf. Technol. 2021, 115, 2017–2035. [Google Scholar]
- Li, P.; Xu, X.; Tan, W.; Liu, H.; Wang, X. Improvement of laser transmission welding of glass with titanium alloy by laser surface treatment. Materials 2018, 11, 2060. [Google Scholar] [CrossRef]
- Huo, J.; Yuan, J.; Chen, Q.; Luo, M.; Lu, J.; Xu, J.; Zhang, Q. Welding reinforcement between silica glass and stainless steel using nanosecond fiber laser with chromium interlayer. Opt. Lasers Eng. 2024, 172, 107877. [Google Scholar] [CrossRef]
- de Pablos-Martín, A.; Höche, T. Laser welding of glasses using a nanosecond pulsed Nd: YAG laser. Opt. Lasers Eng. 2017, 90, 1–9. [Google Scholar] [CrossRef]
- Wang, H.; Guo, L.; Zhang, X.; Dong, J.; Lue, Q.; Zhang, Q.; Li, J. Influence of processing parameters on the quality of titanium-coated glass welded by nanosecond pulse laser. Opt. Laser Technol. 2021, 144, 107411. [Google Scholar] [CrossRef]
- Chen, M.; Wang, M.; Yang, H.; Wang, X.; Tang, D.; Jiang, J. Pre-oxidation of Ti and its diffusion bonding to K9 glass: Microstructure and mechanism properties. J. Mater. Sci. 2022, 57, 6790–6802. [Google Scholar] [CrossRef]
- Xu, M.; Chen, C.; Shao, J.; Tian, C.; Zhang, M.; Zhang, W. Effect of High-Temperature Oxidation on Laser Transmission Welding of High Borosilicate Glass and TC4 Titanium Alloy. J. Mater. Eng. Perform. 2024, 1–11. [Google Scholar] [CrossRef]
- Sugioka, K.; Iida, M.; Takai, H.; Micorikawa, K. Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train. Opt. Lett. 2011, 36, 2734–2736. [Google Scholar] [CrossRef]
- Richter, S.; Döring, S.; Tünnermann, A.; Nolte, S. Bonding of glass with femtosecond laser pulses at high repetition rates. Appl. Phys. A 2011, 103, 257–261. [Google Scholar] [CrossRef]
- Han, S.W.; Lee, G.; Kim, H.; Kim, M.S.; Jo, Y.R.; Cho, J. Effect of weld geometry on fatigue performance of 6061-T6 aluminum GMAW: Part 2. Lap joint. J. Mech. Sci. Technol. 2022, 36, 5209–5214. [Google Scholar] [CrossRef]
- Tzeng, Y.F. Parametric analysis of the pulsed Nd: YAG laser seam-welding process. J. Mater. Process. Technol. 2000, 102, 40–47. [Google Scholar] [CrossRef]
Ti | Fe | C | N | H | O | Al | V |
---|---|---|---|---|---|---|---|
>99 | ≤0.3 | ≤0.1 | ≤0.05 | ≤0.015 | ≤0.2 | 5.5–6.8 | 3.5–4.5 |
SiO2 | B2O3 | Al2O3 | Na2O and K2O | Other |
---|---|---|---|---|
80.4 | 12.7 | 2.4 | 4.2 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Li, L.; Zhang, M.; Xu, M.; Zhang, W. Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass. Materials 2024, 17, 4371. https://doi.org/10.3390/ma17174371
Chen C, Li L, Zhang M, Xu M, Zhang W. Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass. Materials. 2024; 17(17):4371. https://doi.org/10.3390/ma17174371
Chicago/Turabian StyleChen, Changjun, Lei Li, Min Zhang, Mengxuan Xu, and Wei Zhang. 2024. "Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass" Materials 17, no. 17: 4371. https://doi.org/10.3390/ma17174371
APA StyleChen, C., Li, L., Zhang, M., Xu, M., & Zhang, W. (2024). Study on Laser Transmission Welding Technology of TC4 Titanium Alloy and High-Borosilicate Glass. Materials, 17(17), 4371. https://doi.org/10.3390/ma17174371