Influence of the Hierarchy Structure of Aluminum Particles on Density, Combustion Efficiency, and Ignition Delay
Abstract
:1. Introduction
2. Experimental
2.1. Mechanism of In Situ Preparation of mAl@nAl Composites
2.2. Preparation of the mAl@nAl Composites
2.3. Morphological and Compositional Characterization
2.4. Combustion Performances
3. Results and Discussion
3.1. Morphologies of mAl@nAl Composites
3.2. Reaction Performance of mAl@nAl Composites
3.2.1. Combustion Efficiency of mAl@nAl Composites
3.2.2. Constant-Volume Combustion Tests under Zero Oxygen Balance
P-t Results
Combustion Spectra
3.2.3. Constant-Volume Combustion Tests at Constant Heat
3.2.4. Ignition Delay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bagheri, V.; Keshavarz, M.H.; Mousaviazar, A. The effect of active aluminum content on the detonation performance of aluminized explosives. J. Energ. Mater. 2023, 41, 144–156. [Google Scholar] [CrossRef]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.L.; Qiu, F. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Williams, A.; Shancita, I.; Altman, I.; Tamura, N.; Pantoya, M.L. On the Pressure Generated by Thermite Reactions Using Stress-Altered Aluminum Particles. Propellants Explos. Pyrotech. 2021, 46, 99–106. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Wang, S.; Su, X.; Zou, M. Facile energetic fluoride chemistry induced organically coated aluminum powder with effectively improved ignition and combustion performances. J. Therm. Anal. Calorim. 2023, 148, 5957–5966. [Google Scholar] [CrossRef]
- Ali, R.; Ali, F.; Zahoor, A.; Shahid, R.N.; Tariq, N.U.H.; Ali, G.; Ullah, S.; Shah, A.; Bin Awais, H. Preparation and oxidation of aluminum powders with surface alumina replaced by iron coating. J. Energ. Mater. 2020, 40, 243–257. [Google Scholar] [CrossRef]
- Ju, Z.Y.; An, J.L.; Guo, C.Y.; Li, T.R.; Jia, Z.Y.; Wu, R.F. The oxidation reaction and sensitivity of aluminum nanopowders coated by hydroxyl-terminated polybutadiene. J. Energ. Mater. 2021, 39, 299–312. [Google Scholar] [CrossRef]
- Jing, Q.; Wang, D.; Liu, Q.; Shi, C.; Liu, J. Ignition sensitivity and explosion behaviors of micron-sized aluminum powder: Comparison between flake aluminum powder and spherical aluminum powder. Chem. Eng. Sci. 2022, 252, 117502. [Google Scholar] [CrossRef]
- Streletskii, A.N.; Kolbanev, I.V.; Permenov, D.G.; Povstugar, I.V.; Borunova, A.B.; Dolgoborodov, A.Y.; Makhov, M.N.; Butyagin, P.Y. The reactivity of Al-based “mechanochemical” nanocomposites. Rev. Adv. Mater. Sci. 2008, 18, 353–359. [Google Scholar]
- Elbasuney, S.; Zaky, M.G.; Radwan, M.; Maraden, A.; Abdelkhalek, S.M. Aluminium nanoparticles: The potentials of metalized explosives with combined destructive effect (combustion/detonation). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 975, p. 012009. [Google Scholar]
- Sundaram, D.; Yang, V.; Zarko, V.E. Combustion of nano aluminum particles. Combust. Explos. Shock Waves 2015, 51, 173–196. [Google Scholar] [CrossRef]
- Miller, K.K.; Gottfried, J.L.; Walck, S.D.; Pantoya, M.L.; Wu, C. Plasma surface treatment of aluminum nanoparticles for energetic material applications. Combust. Flame 2019, 206, 211–213. [Google Scholar] [CrossRef]
- Elbasuney, S.; Zaky, M.G.; Bennaya, M.; Abdelkhalek, S.M. The potentials of aluminium nanoparticles: Novel high energy density material for underwater explosions. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 975, p. 012008. [Google Scholar]
- Dai, X.; Wen, Y.; Huang, F.; Huang, H.; Huang, Y. Effect of temperature, density and confinement on deflagration to detonation transition of an HMX-based explosive. Propellants Explos. Pyrotech. 2014, 39, 563–567. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Guo, W.; Li, X.; Xiao, Q. Effect of charge density and size on detonation pressure and detonation velocity of RDX-based aluminized explosive. Chin. J. Energ. Mater. 2012, 18, 563–567. [Google Scholar]
- Crouse, C.A.; Pierce, C.J.; Spowart, J.E. Influencing solvent miscibility and aqueous stability of aluminum nanoparticles through surface functionalization with acrylic monomers. ACS Appl. Mater. Interfaces 2010, 2, 2560–2569. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, K.; Jiang, A.; Hao, D.; Yang, Y.; Xia, D.; Fan, R. Fabrication of hybrid aluminum nanoparticles with organosilicon surface by solvent-free coating approach. J. Nanopart. Res. 2019, 21, 167. [Google Scholar] [CrossRef]
- Ke, X.; Guo, S.; Gou, B.; Wang, N.; Zhou, X.; Xiao, L.; Hao, G.; Jiang, W. Superhydrophobic fluorine-containing protective coating to endow Al nanoparticles with long-term storage stability and self-activation reaction capability. Adv. Mater. Interfaces 2019, 6, 1901025. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, K.T.; Lee, D.U.; Jung, S.H.; Yang, D.Y.; Yu, J. Influence of poly(vinylidene fluoride) coating layer on exothermic reactivity and stability of fine aluminum particles. Appl. Surf. Sci. 2021, 551, 149431. [Google Scholar] [CrossRef]
- Moiseeva, K.M.; Krainov, A.Y.; Poryazov, V.A.; Krainov, D.A. Combustion of a single nanoscale nickel-coated aluminum particle in a gaseous oxidizer. In Proceedings of the 27th All-Russian Conference with International Participation on High-Energy Processes in Condensed Matter RAS, SB, Khristianovich Inst Theoret & Appl Mech, Novosibirsk, Russia, 29 June–3 July 2020; p. 030015. [Google Scholar]
- Wang, W.; Li, H.; Yang, Y.; Zhao, F.; Li, H.; Xu, K. Enhanced thermal decomposition, laser ignition and combustion properties of NC/Al/RDX composite fibers fabricated by electrospinning. Cellulose 2021, 28, 6089–6105. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Z.; Li, Y.; Zheng, B.; Yan, Q.; Guan, L.; Luo, G.; Li, S.; Nie, F. Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity. Chem. Eng. J. 2020, 383, 123110. [Google Scholar] [CrossRef]
- Woody, D.; Dokhan, A.; Johnson, C. Performance comparisons of nanoaluminum, coated microaluminum and their bimodal mixtures. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2004; Volume 706, pp. 906–912. [Google Scholar]
- Moore, K.; Pantoya, M.L.; Son, S.F. Combustion behaviors resulting from bimodal aluminum size distributions in thermites. J. Propuls. Power 2007, 23, 181–185. [Google Scholar] [CrossRef]
- Connell, T.L., Jr.; Risha, G.; Yetter, R.; Yang, V.; Son, S.F. Combustion of bimodal aluminum particles and ice mixtures. Int. J. Energ. Mater. Chem. Propuls. 2012, 11, 259–273. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, S.F.; Zhao, F.Q.; Liu, Z.R.; Yin, C.M.; Luo, Y.; Li, S.W. Research on the combustion properties of propellants with low content of nano metal powders. Propellants Explos. Pyrotech. 2006, 31, 139–147. [Google Scholar]
- Matsumoto, K.; Habu, H. Viscosity of aluminum/hydroxyl-terminated polybutadiene suspensions using bimodal aluminum particles. Sci. Technol. Energ. Mater. 2021, 83, 8–13. [Google Scholar]
- Niu, G.; Wang, S.; Jin, D. Influence of the nano-aluminium on underwater energy of RDX-based pressed explosive. Chin. J. Explos. Propellants (Huozhayao Xuebao) 2015, 38, 64–68. [Google Scholar]
- Niu, G.T.; Cao, S.T.; Niu, L.; Jin, D.Y.; Yao, L.N. Dispersibility and formability of explosives with nano-aluminum. Sci. Technol. Eng. 2021, 21, 8018–8022. [Google Scholar]
- Jiang, F.; Wang, X.; Huang, Y.; Feng, B.; Tian, X.; Niu, Y.; Zhang, K. Effect of particle gradation of aluminum on the explosion field pressure and temperature of RDX-based explosives in vacuum and air atmosphere. Def. Technol. 2019, 15, 844–852. [Google Scholar] [CrossRef]
- Oquendo-Patiño, W.F.; Estrada, N. Finding the grain size distribution that produces the densest arrangement in frictional sphere packings: Revisiting and rediscovering the century-old Fuller and Thompson distribution. Phys. Rev. E 2022, 105, 064901. [Google Scholar] [CrossRef] [PubMed]
- Lerner, M.I.; Glazkova, E.A.; Lozhkomoev, A.S.; Svarovskaya, N.V.; Bakina, O.V.; Pervikov, A.V.; Psakhie, S.G. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol. 2016, 295, 307–314. [Google Scholar] [CrossRef]
- Wang, J.; Peng, C.; Dai, H.; Lu, F.; Zhao, Z. Synthesis of zirconium dioxide nanoparticles by electrical explosion of zirconium wire and characteristics. Rare Met. Mater. Eng. 2019, 7, 2118–2121. [Google Scholar]
- Rengaswamy, J.; Satyanarayanan Raghuraman, C.; Hisayuki, S.; Ramanujam, S. Enhancement of hydrogen generation using nanoaluminum particles produced by a wire explosion process. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 810–818. [Google Scholar]
Samples | Density | Weight Percent of Each Component (%) | ||||
---|---|---|---|---|---|---|
g/cm3 | nAl | 5 μm Al | 10 μm Al | 50 μm Al | Al Flake | |
PG-20 | 1.18 | 20 | 30 | 20 | 20 | 10 |
PG-25 | 1.04 | 25 | 30 | 20 | 15 | 10 |
PG-30 | 1.05 | 30 | 25 | 20 | 15 | 10 |
Samples | PG-20 | PG-25 | PG-30 | EX-14 | EX-16 | EX-18 | EX-20 |
---|---|---|---|---|---|---|---|
Qs-theo (kJ/g) | 29.76 | 29.76 | 29.76 | 28.52 | 27.59 | 27.90 | 27.59 |
Qs-actu (kJ/g) | 7.63 | 8.24 | 9.05 | 7.16 | 7.99 | 9.98 | 10.67 |
η (%) | 25.64 | 27.69 | 30.41 | 25.10 | 28.96 | 35.77 | 38.67 |
σ (%) | 0.33 | 0.17 | 0.30 | 0.42 | 0.33 | 0.36 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yin, L.; Ren, H.; Wu, X.; Sun, J.; Liu, X. Influence of the Hierarchy Structure of Aluminum Particles on Density, Combustion Efficiency, and Ignition Delay. Materials 2024, 17, 4354. https://doi.org/10.3390/ma17174354
Li Y, Yin L, Ren H, Wu X, Sun J, Liu X. Influence of the Hierarchy Structure of Aluminum Particles on Density, Combustion Efficiency, and Ignition Delay. Materials. 2024; 17(17):4354. https://doi.org/10.3390/ma17174354
Chicago/Turabian StyleLi, Yaru, Liu Yin, Hui Ren, Xinzhou Wu, Jinshan Sun, and Xuwang Liu. 2024. "Influence of the Hierarchy Structure of Aluminum Particles on Density, Combustion Efficiency, and Ignition Delay" Materials 17, no. 17: 4354. https://doi.org/10.3390/ma17174354
APA StyleLi, Y., Yin, L., Ren, H., Wu, X., Sun, J., & Liu, X. (2024). Influence of the Hierarchy Structure of Aluminum Particles on Density, Combustion Efficiency, and Ignition Delay. Materials, 17(17), 4354. https://doi.org/10.3390/ma17174354