Survey of Microstructures and Dimensional Accuracy of Various Microlattice Designs Using Additively Manufactured 718 Superalloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The Formation of γ″ Precipitates in the As-Printed 718 Alloy without Heat Treatment
4.2. Dimensional Accuracy of Microlattices Using LPBF
4.3. The Influence of Microlattice Architectures on Crack Formation
4.4. The Influence of Relative Density on Crack Formation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Bhatia, A.; Sehgal, A.K. Additive Manufacturing Materials, Methods and Applications: A Review. Mater. Today Proc. 2023, 81, 1060–1067. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Y.; McMurtrey, M.D.; Jerred, N.D.; Liou, F.; Li, J. Additive Manufacturing for Energy: A Review. Appl. Energy 2021, 282, 116041. [Google Scholar] [CrossRef]
- Vafadar, A.; Guzzomi, F.; Rassau, A.; Hayward, K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021, 11, 1213. [Google Scholar] [CrossRef]
- Nee, A.Y.C.; Ong, S.K.; Chryssolouris, G.; Mourtzis, D. Augmented Reality Applications in Design and Manufacturing. CIRP Ann. Manuf. Technol. 2012, 61, 657–679. [Google Scholar] [CrossRef]
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. Int. Sch. Res. Not. 2012, 2012, 208760. [Google Scholar] [CrossRef]
- Koli, D.K.; Agnihotri, G.; Purohit, R. Advanced Aluminium Matrix Composites: The critical Need of Automotive and Aerospace Engineering Fields. Mater. Today Proc. 2015, 2, 3032–3041. [Google Scholar] [CrossRef]
- Pervaiz, M.; Panthapulakkal, S.; Kc, B.; Sain, M.; Tjong, J. Emerging Trends in Automotive Lightweighting through Novel Composite Materials. Mater. Sci. Appl. 2016, 7, 26–38. [Google Scholar] [CrossRef]
- Gangireddy, S.; Komarasamy, M.; Faierson, E.J.; Mishra, R.S. High Strain Rate Mechanical Behavior of Ti-6Al-4V Octet Lattice Structures Additively Manufactured by Selective Laser Melting (SLM). Mater. Sci. Eng. A 2019, 745, 231–239. [Google Scholar] [CrossRef]
- Mahmoud, D.; Elbestawi, M.A. Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review. J. Manuf. Mater. Process. 2017, 1, 13. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, X. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson’s Ratios. Sci. Rep. 2018, 8, 9139. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Fezzaa, K.; Cunningham, R.W.; Wen, H.; De Carlo, F.; Chen, L.; Rollett, A.D.; Sun, T. Real-time Monitoring of Laser Powder Bed Fusion Process Using High-speed X-ray Imaging and Diffraction. Sci. Rep. 2017, 7, 3602. [Google Scholar] [CrossRef]
- Xue, Y.Y.; Wang, X.F.; Wang, W.; Zhong, X.K.; Han, F.H. Compressive Property of Al-based Auxetic Lattice Structures Fabricated by 3D Printing Combined with Investment Casting. Mater. Sci. Eng. A 2018, 722, 255–262. [Google Scholar] [CrossRef]
- Zhang, D.; Kenel, C.; Dunand, D.C. Microstructure and Properties of Additively-Manufactured WC-Co Microlattices and WC-Cu Composites. Acta Mater. 2021, 221, 117420. [Google Scholar] [CrossRef]
- Yap, X.Y.; Seetoh, I.; Goh, W.L.; Ye, P.; Zhao, Y.; Du, Z.; Lai, C.Q.; Gan, C.L. Mechanical properties and failure behaviour of architected alumina microlattices fabricated by stereolithography 3D printing. Int. J. Mech. Sci. 2021, 196, 106285. [Google Scholar] [CrossRef]
- Saleh, M.S.; Hu, C.; Brenneman, J.; Al Mutairi, A.M.; Panat, R. 3D Printed Three-dimensional Metallic Microlattices with Controlled and Tunable Mechanical Properties. Addit. Manuf. 2021, 39, 101856. [Google Scholar] [CrossRef]
- Bai, L.; Xu, Y.; Chen, X.; Xin, L.; Zhang, J.; Li, K.; Sun, Y. Improved Mechanical Properties and Energy Absorption of Ti6Al4V Laser Powder Bed Fusion Lattice Structures Using Curving Lattice Struts. Mater. Des. 2021, 211, 110140. [Google Scholar] [CrossRef]
- Kim, S.H.; Yeon, S.-M.; Lee, J.H.; Kim, Y.W.; Lee, H.; Park, J.; Lee, N.-K.; Choi, J.P.; Aranas, C.; Lee, Y.J.; et al. Additive Manufacturing of A Shift Block via Laser Powder Bed Fusion: The Simultaneous Utilisation of Optimised Topology and A Lattice Structure. Virtual Phys. Prototyp. 2020, 15, 460–480. [Google Scholar] [CrossRef]
- Huynh, L.; Rotella, J.; Sangid, M.D. Fatigue Behavior of IN718 Microtrusses Produced via Additive Manufacturing. Mater. Des. 2016, 105, 278–289. [Google Scholar] [CrossRef]
- Banait, S.; Liu, C.; Campos, M.; Pham, M.; Pérez-Prado, M. Effect of Microstructure on the Effectiveness of Hybridization on Additively Manufactured Inconel718 Lattices. Mater. Des. 2023, 236, 112484. [Google Scholar] [CrossRef]
- Hazeli, K.; Babamiri, B.B.; Indeck, J.; Minor, A.; Askari, H. Microstructure-topology relationship effects on the quasi-static and dynamic behavior of additively manufactured lattice structures. Mater. Des. 2019, 176, 107826. [Google Scholar] [CrossRef]
- English, C.L.; Tewari, S.K.; Abbott, D.H. An Overview of Ni Base Additive Fabrication Technologies for Aerospace Applications. In Proceedings of the 7th International Symposium on Superalloy718 and Derivatives, Pittsburgh, PA, USA, 10–13 October 2010; Volume 1, pp. 399–412. [Google Scholar] [CrossRef]
- Schafrik, R.E.; Ward, D.D.; Groh, J.R. Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years. Proc. Int. Symp. Superalloys Var. Deriv. 2001, 1, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Delgado-Baquerizo, M.; Wang, D.; Isbell, F.; Liu, J.; Feng, C.; Liu, J.; Zhong, Z.; Zhu, H.; Yuan, X.; et al. Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility. Nat. Mater. 2018, 17, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-L.; Horikawa, S.; Kakehi, K. The Efect of Interdendritic δ Phase on the Mechanical Properties of Alloy 718 Built up by Additive Manufacturing. Mater. Des. 2017, 116, 411–418. [Google Scholar] [CrossRef]
- Xiao, H.; Li, S.; Xiao, W.; Li, Y.; Cha, L.; Mazumder, J.; Song, L. Effects of Laser Modes on Nb Segregation and Laves Phase Formation during laser Additive Manufacturing of Nickel-based Superalloy. Mater. Lett. 2017, 188, 260–262. [Google Scholar] [CrossRef]
- Legros, M.; Dehm, G.; Arzt, E.; Balk, T.J. Observation of Giant Diffusivity along Dislocation Cores. Science 2008, 319, 1646–1649. [Google Scholar] [CrossRef]
- Rafiei, M.; Mirzadeh, H.; Malekan, M. Micro-mechanisms and Precipitation Kinetics of Delta (δ) Phase in Inconel 718 Superalloy during Aging. J. Alloys Compd. 2019, 795, 207–212. [Google Scholar] [CrossRef]
- Bao, Y. Dependence of Dutile Crack Formation in Tensile Tests on Stress Triaxiality, Stress and Strain Ratios. Eng. Fract. Mech. 2005, 72, 505–522. [Google Scholar] [CrossRef]
- Stegman, B.; Dasika, P.S.; Lopez, J.; Shang, A.; Zavattieri, P.; Wang, H.; Zhang, X. In-situ Observation of Deformation-induced Grain Reorientation in 718 Ni Alloy Microlattices. J. Mater. Sci. Technol. 2024, 193, 107–115. [Google Scholar] [CrossRef]
- Stegman, B.; Shang, A.; Hoppenrath, L.; Raj, A.; Abdel-Khalik, H.; Sutherland, J.; Schick, D.; Morgan, V.; Jackson, K.; Zhang, X. Volumetric Energy Density Impact on Mechanical Properties of Additively Manufactured 718 Ni Alloy. Mater. Sci. Eng. A 2022, 854, 143699. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Shang, A.; Stegman, B.; Sinclair, D.; Sheng, X.; Hoppenrath, L.; Shen, C.; Xu, K.; Flores, E.; Wang, H.; Chawla, N.; et al. Crack Mitigation Strategies for a High-strength Al Alloy Fabricated by Additive Manufacturing. J. Mater. Res. Technol. 2024, 30, 5497–5511. [Google Scholar] [CrossRef]
- Dehmas, M.; Lacaze, J.; Niang, A.; Viguier, B. TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy. Adv. Mater. Sci. Eng. 2011, 2011, 940634. [Google Scholar] [CrossRef]
- Dubiel, B.; Kruk, A.; Stepniowska, E.; Cempura, G.; Geiger, D.; Formanek, P.; Hernandez, J.; Midgley, P.; Czyrska-Filemonowicz, A. TEM, HRTEM, Electron Holography and Electron Tomography Studies of γ′ and γ″ Nanoparticles in Inconel 718 Superalloy. J. Microsc. 2009, 236, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Shi-Hsien Chang, S.C. In Situ TEM Observation of γ′, γ″ and δ Precipitations on Inconel 718 Superalloy through HIP Treatment. J. Alloys Compd. 2009, 486, 716–721. [Google Scholar] [CrossRef]
- Cao, G.; Sun, T.; Wang, C.; Li, X.; Liu, M.; Zhang, Z.; Hu, P.; Russell, A.; Schneider, R.; Gerthsen, D.; et al. Investigations of γ′, γ″ and δ Precipitates in Heat-treated Inconel 718 Alloy Fabricated by Selective Laser Melting. Mater. Charact. 2018, 136, 398–406. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Hu, J.; Liu, H.; Wu, Y.; Zhou, Q. Optimization of Surface Roughness and Dimensional Accuracy in LPBF Additive Manufacturing. Opt. Laser Technol. 2021, 142, 107246. [Google Scholar] [CrossRef]
- Wu, Z.; Narra, S.P.; Rollett, A. Exploring the Fabrication Limits of Thin-wall Structures in a Laser Powder Bed Fusion Process. Int. J. Adv. Manuf. Technol. 2020, 110, 191–207. [Google Scholar] [CrossRef]
- Chakraborty, A.; Tangestani, R.; Batmaz, R.; Muhammad, W.; Plamondon, P.; Wessman, A.; Yuan, L.; Martin, É. In-process Failure Analysis of Thin-wall Structures Made by Laser Powder Bed Fusion Additive Manufacturing. J. Mater. Sci. Technol. 2022, 98, 233–243. [Google Scholar] [CrossRef]
- Shahabad, S.I.; Ali, U.; Zhang, Z.; Keshavarzkermani, A.; Esmaeilizadeh, R.; Bonakdar, A.; Toyserkani, E. On the Effect of Thin-wall Thickness on Melt Pool Dimensions in Laser Powder-bed Fusion of Hastelloy X: Numerical Modeling and Experimental Validation. J. Mater. Res. Technol. 2022, 75, 435–449. [Google Scholar] [CrossRef]
- Noronha, J.; Qian, M.; Leary, M.; Kyriakou, E.; Almalki, A.; Brudler, S.; Brandt, M. Additive Manufacturing of Ti-6Al-4V Horizontal Hollow Struts with Submillimetre Wall Thickness by Laser Powder Bed Fusion. Thin Wall Struct. 2022, 179, 109620. [Google Scholar] [CrossRef]
- Stegman, B.; Yang, B.; Shang, Z.; Ding, J.; Sun, T.; Lopez, J.; Jarosinski, W.; Wang, H.; Zhang, X. Reactive introduction of oxide nanoparticles in additively manufactured 718 Ni alloys with improved high temperature performance. J. Alloys Compd. 2022, 920, 165846. [Google Scholar] [CrossRef]
- Carroll, B.E.; Palmer, T.A.; Beese, A.M. Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive Manufacturing. Acta Mater. 2015, 87, 309–320. [Google Scholar] [CrossRef]
- Zhang, B.; Dembinski, L.; Coddet, C. The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder. Mater. Sci. Eng. A 2013, 584, 21–31. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shamsaei, N. Additive Manufacturing of Fatigue-Resistant Materials: Challenges and Opportunities. Int. J. Fatigue 2017, 98, 14–31. [Google Scholar] [CrossRef]
- Rafi, H.K.; Karthik, N.V.; Gong, H.; Starr, T.L.; Stucker, B.E. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. Mater. Eng. Perform. 2013, 22, 3872–3883. [Google Scholar] [CrossRef]
- Algardh, J.K.; Horn, T.; West, H.; Aman, R.; Snis, A.; Engqvist, H.; Lausmaa, J.; Harrysson, O. Thickness Dependence of Mechanical Properties for Thin-walled Titanium Parts Manufactured by Electron Beam Melting (EBM). Addit. Manuf. 2016, 12, 45–50. [Google Scholar] [CrossRef]
- Wang, X.; Muñiz-Lerma, J.A.; Shandiz, M.A.; Sanchez-Mata, O.; Brochu, M. Crystallographic-orientation-dependent Tensile Behaviours of Stainless Steel 316L Fabricated by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2019, 766, 138395. [Google Scholar] [CrossRef]
- Kangazian, J.; Shamanian, M.; Kermanpur, A.; Sadeghi, F.; Foroozmehr, E. An Investigation on the Microstructure and Compression Properties of Laser Powder-bed Fusion Fabricated Hastelloy X Ni-based Superalloy Honeycomb Structures. Mater. Sci. Eng. A 2022, 853, 143797. [Google Scholar] [CrossRef]
- du Plessis, A.; Razavi, N.; Berto, F.; Razavi, S. The Effects of Microporosity in Struts of Gyroid Lattice Structures Produced by Laser Powder Bed Fusion. Mater. Des. 2020, 194, 108899. [Google Scholar] [CrossRef]
- Constantin, L.; Kraiem, N.; Wu, Z.; Cui, B.; Battaglia, J.-L.; Garnier, C.; Silvain, J.-F.; Lu, Y.F. Manufacturing of Complex Diamond-based Composite Structures via Laser Powder-bed Fusion. Addit. Manuf. 2021, 40, 101927. [Google Scholar] [CrossRef]
- Falkowska, A.; Seweryn, A.; Skrodzki, M. Strength Properties of a Porous Titanium Alloy Ti6Al4V with Diamond Structure Obtained by Laser Power Bed Fusion (LPBF). Materials 2020, 13, 5138. [Google Scholar] [CrossRef] [PubMed]
- Hyer, H.; Zhou, L.; Liu, Q.; Wu, D.; Song, S.; Bai, Y.; McWilliams, B.; Cho, K.; Sohn, Y. High Strength WE43 Microlattice Structures Additively Manufactured by Laser Powder Bed Fusion. Materialia 2021, 16, 101067. [Google Scholar] [CrossRef]
- Korshunova, N.; Alaimo, G.; Hosseini, S.; Carraturo, M.; Reali, A.; Niiranen, J.; Auricchio, F.; Rank, E.; Kollmannsberger, S. Image-based Numerical Characterization and Experimental Validation of Tensile Behavior of Octet-truss Lattice Structures. Addit. Manuf. 2021, 41, 101949. [Google Scholar] [CrossRef]
- Xu, Z.; Tvenning, T.; Wu, T.; Razavi, N. Evaluating Quasi-static and Fatigue Performance of IN718 Gyroid Lattice Structures Fabricated via LPBF: Exploring Relative Densities. Int. J. Fatigue 2024, 178, 108028. [Google Scholar] [CrossRef]
Ni | Cr | Fe | Nb | Mo | Ti | Al | Mn | Si | Co | C | Ta | O | N | B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
718 Powder (wt%) | Bal. | 18.71 | 18.12 | 5.12 | 3.04 | 0.93 | 0.49 | 0.35 | 0.15 | 0.09 | 0.08 | 0.05 | 0.011 | 0.012 | 0.001 |
Measured Thickness (μm) | Designed Thickness (μm) | Dimensional Deviation (%) | Large Cracks | |
---|---|---|---|---|
Column-20% | 623 ± 12 | 506 | 23.1 | No |
Column-30% | 786 ± 25 | 621 | 26.6 | No |
Fluorite-20% | 374 ± 20 | 305 | 22.6 | No |
Fluorite-30% | 398 ± 22 | 387 | 2.9 | Yes |
Gyroid-20% | 271 ± 47 | 208 | 30.5 | No |
Gyroid-30% | 311 ± 41 | 310 | 0.4 | Yes |
Diamond-20% | 436 ± 15 | 430 | 1.5 | No |
Diamond-30% | 748 ± 28 | 545 | 37.2 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Stegman, B.; Shen, C.; Zhou, S.; Shang, A.; Chen, Y.; Flores, E.J.; García, R.E.; Zhang, X.; Wang, H. Survey of Microstructures and Dimensional Accuracy of Various Microlattice Designs Using Additively Manufactured 718 Superalloy. Materials 2024, 17, 4334. https://doi.org/10.3390/ma17174334
Li H, Stegman B, Shen C, Zhou S, Shang A, Chen Y, Flores EJ, García RE, Zhang X, Wang H. Survey of Microstructures and Dimensional Accuracy of Various Microlattice Designs Using Additively Manufactured 718 Superalloy. Materials. 2024; 17(17):4334. https://doi.org/10.3390/ma17174334
Chicago/Turabian StyleLi, Huan, Benjamin Stegman, Chao Shen, Shiyu Zhou, Anyu Shang, Yang Chen, Emiliano Joseph Flores, R. Edwin García, Xinghang Zhang, and Haiyan Wang. 2024. "Survey of Microstructures and Dimensional Accuracy of Various Microlattice Designs Using Additively Manufactured 718 Superalloy" Materials 17, no. 17: 4334. https://doi.org/10.3390/ma17174334
APA StyleLi, H., Stegman, B., Shen, C., Zhou, S., Shang, A., Chen, Y., Flores, E. J., García, R. E., Zhang, X., & Wang, H. (2024). Survey of Microstructures and Dimensional Accuracy of Various Microlattice Designs Using Additively Manufactured 718 Superalloy. Materials, 17(17), 4334. https://doi.org/10.3390/ma17174334