Estimation of the Structure of Hydrophobic Surfaces Using the Cassie–Baxter Equation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Textures
3.2. Method Equation
3.3. Graphical Solution of Equations and Wetting Diagrams
3.4. Application on Textured Polydimethylsiloxane Surface
3.5. Description of the Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, H.; Liu, Z.; Ji, T.; Yang, C.; Xu, N. Recent Advances in the Preparation of Superhydrophobic Coatings Based on Low-Surface-Energy Modifiers: Diversified Properties and Potential Applications. Appl. Therm. Eng. 2024, 251, 123591. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Zhang, H.; An, K. Recent Advances and Strategies in Mechanical Stability of Superhydrophobic Surfaces. Prog. Org. Coat. 2024, 194, 108595. [Google Scholar] [CrossRef]
- Zhang, D.; Ji, J.; Yan, C.; Zhang, J.; An, Z.; Shen, Y. Research Advances in Bio-Inspired Superhydrophobic Surface: Bridging Nature to Practical Applications. J. Ind. Eng. Chem. 2024, in press. [Google Scholar] [CrossRef]
- Wang, X.; Tian, W.; Ye, Y.; Chen, Y.; Wu, W.; Jiang, S.; Wang, Y.; Han, X. Surface Modifications towards Superhydrophobic Wood-Based Composites: Construction Strategies, Functionalization, and Perspectives. Adv. Colloid Interface Sci. 2024, 326, 103142. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.; Sun, J.; Shen, Z.; Xiao, Q. Synthesis of Polymeric Superhydrophobic Coatings of Nickel Stearate for Excellent Corrosion Resistance, Self-Cleaning, and Photodegradation. Surf. Interfaces 2024, 51, 104648. [Google Scholar] [CrossRef]
- Siddiqui, A.R.; Maurya, R.; Katiyar, P.K.; Balani, K. Superhydrophobic, Self-Cleaning Carbon Nanofiber CVD Coating for Corrosion Protection of AISI 1020 Steel and AZ31 Magnesium Alloys. Surf. Coat. Technol. 2020, 404, 126421. [Google Scholar] [CrossRef]
- Ma, N.; Cheng, D.; Zhang, J.; Zhao, S.; Lu, Y. A Simple, Inexpensive and Environmental-Friendly Electrochemical Etching Method to Fabricate Superhydrophobic GH4169 Surfaces. Surf. Coat. Technol. 2020, 399, 126180. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Yu, K.; Zhang, L.; Jiang, Y.; Wang, G. Superhydrophobic Biomimetic Microstructures Prepared by Laser-Ablation for Drag Reduction. Colloids Surf. A Physicochem. Eng. Asp. 2024, 686, 133381. [Google Scholar] [CrossRef]
- Erbil, H.Y. Practical Applications of Superhydrophobic Materials and Coatings: Problems and Perspectives. Langmuir 2020, 36, 2493–2509. [Google Scholar] [CrossRef] [PubMed]
- Myronyuk, O.; Baklan, D.; Vasilyev, G.S.; Rodin, A.M.; Vanagas, E. Wetting Patterns of Liquid-Repellent Femtosecond Laser Textured Aluminum Surfaces. Coatings 2022, 12, 1852. [Google Scholar] [CrossRef]
- Milne, A.J.B.; Amirfazli, A. The Cassie Equation: How It Is Meant to Be Used. Adv. Colloid Interface Sci. 2012, 170, 48–55. [Google Scholar] [CrossRef]
- Yang, C.; An, F.; Huang, J.; Zhao, Y.; Li, S.; Shi, W. Superhydrophobic Performance of Aluminum Textured with a Picosecond Laser. Mater. Today Commun. 2024, 40, 109652. [Google Scholar] [CrossRef]
- Rahimi, E.; Rafsanjani-Abbasi, A.; Kiani-Rashid, A.; Jafari, H.; Davoodi, A. Morphology Modification of Electrodeposited Superhydrophobic Nickel Coating for Enhanced Corrosion Performance Studied by AFM, SEM-EDS and Electrochemical Measurements. Colloids Surf. A Physicochem. Eng. Asp. 2018, 547, 81–94. [Google Scholar] [CrossRef]
- Yilgor, I.; Bilgin, S.; Isik, M.; Yilgor, E. Tunable Wetting of Polymer Surfaces. Langmuir 2012, 28, 14808–14814. [Google Scholar] [CrossRef] [PubMed]
- Myronyuk, O.; Baklan, D.; Rodin, A.M. Owens–Wendt Method for Comparing the UV Stability of Spontaneous Liquid-Repellency with Wet Chemical Treatment of Laser-Textured Stainless Steel. Biomimetics 2023, 8, 584. [Google Scholar] [CrossRef]
- Vudayagiri, S.; Junker, M.D.; Skov, A.L. Factors Affecting the Surface and Release Properties of Thin Polydimethylsiloxane Films. Polym. J. 2013, 45, 871–878. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, Z.; Xu, K.; Zhu, H.; Liu, Y.; Wu, Y.; Yang, S. Reproducible PDMS Flexible Superhydrophobic Films: A Method Utilizing Picosecond Laser-Etched Templates. Prog. Org. Coat. 2024, 189, 108344. [Google Scholar] [CrossRef]
- Kim, D.H.; Jung, Y.; Tak, H.J.; Kwak, D.H.; Ahn, S.; Ko, J.S. Superhydrophobic, Mechanically Durable, Highly Transparent Surface Covered with CuO/PDMS Composite Nano-Tips Using One-Step Wet Oxidation Process of Cu/PDMS Multilayer. Appl. Surf. Sci. 2024, 649, 159165. [Google Scholar] [CrossRef]
- Du, J.; Wu, P.; Kou, H.; Gao, P.; Cao, Y.; Jing, L.; Wang, S.; Rusinov, P.; Zhang, C. Self-Healing Superhydrophobic Coating with Durability Based on EP + PDMS/SiO2 Double-Layer Structure Design. Prog. Org. Coat. 2024, 190, 108359. [Google Scholar] [CrossRef]
- Myronyuk, O.; Baklan, D.; Rodin, A.M. UV Resistance of Super-Hydrophobic Stainless Steel Surfaces Textured by Femtosecond Laser Pulses. Photonics 2023, 10, 1005. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Korpacz, A.N.; Dufour, C.R.; Weiland, Z.J.; Lambert, C.R.; Timko, M.T. Binary Liquid Mixture Contact-Angle Measurements for Precise Estimation of Surface Free Energy. Langmuir 2019, 35, 12317–12325. [Google Scholar] [CrossRef] [PubMed]
- Cabezudo, N.; Sun, J.; Andi, B.; Ding, F.; Wang, D.; Chang, W.; Luo, X.; Xu, B.B. Enhancement of Surface Wettability via Micro- and Nanostructures by Single Point Diamond Turning. Nanotechnol. Precis. Eng. 2019, 2, 8–14. [Google Scholar] [CrossRef]
- Rodrigues, S.P.; Alves, C.F.A.; Cavaleiro, A.; Carvalho, S. Water and Oil Wettability of Anodized 6016 Aluminum Alloy Surface. Appl. Surf. Sci. 2017, 422, 430–442. [Google Scholar] [CrossRef]
- Fan, C.; Wang, X.; Liu, Y.; Li, C.; Liu, X. Rapid Fabrication of near Superhydrophobic Aluminium Surface through Nanosecond Laser Texture and Heat Treatment. J. Phys. Conf. Ser. 2022, 2174, 012050. [Google Scholar] [CrossRef]
- Tong, W.; Xiong, D. Direct Laser Texturing Technique for Metal Surfaces to Achieve Superhydrophobicity. Mater. Today Phys. 2022, 23, 100651. [Google Scholar] [CrossRef]
- Samanta, A.; Wang, Q.; Shaw, S.K.; Ding, H. Roles of Chemistry Modification for Laser Textured Metal Alloys to Achieve Extreme Surface Wetting Behaviors. Mater. Des. 2020, 192, 108744. [Google Scholar] [CrossRef]
- Rudawska, A.; Jacniacka, E. Analysis for Determining Surface Free Energy Uncertainty by the Owen–Wendt Method. Int. J. Adhes. Adhes. 2009, 29, 451–457. [Google Scholar] [CrossRef]
- Zhang, Z. Polar and Dispersive Surface Tension Components of Water-Guanidinium Chloride (Gdmcl) Binary Mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132223. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, Y.; Wang, L.; Luo, X.; Wang, B.; Song, Q.; Liu, Z. Fabrication of Superhydrophobic Stainless Steel via Hybrid Femtosecond Laser-Chemical Method with Wear-Resistance and Anti-Corrosion Properties. Opt. Laser Technol. 2023, 164, 109474. [Google Scholar] [CrossRef]
- Elleb, R.; Engel, T.; Antoni, F.; Fontaine, J.; Mermet, F.; Poncin-Epaillard, F. Study of Femtosecond Laser Multi-Scale Textured Steel Surfaces on the Wettability in Relation to Aging. J. Mater. Sci. 2021, 56, 20169–20180. [Google Scholar] [CrossRef]
- Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic Surface Modification of PDMS for Droplet Microfluidics Using a Simple, Quick, and Robust Method via PVA Deposition. Microsyst. Nanoeng. 2017, 3, 16091. [Google Scholar] [CrossRef] [PubMed]
- Ruben, B.; Elisa, M.; Leandro, L.; Victor, M.; Gloria, G.; Marina, S.; Mian K, S.; Pandiyan, R.; Nadhira, L. Oxygen Plasma Treatments of Polydimethylsiloxane Surfaces: Effect of the Atomic Oxygen on Capillary Flow in the Microchannels. Micro Nano Lett. 2017, 12, 754–757. [Google Scholar] [CrossRef]
- Lostao, A.; Lim, K.; Pallarés, M.C.; Ptak, A.; Marcuello, C. Recent Advances in Sensing the Inter-Biomolecular Interactions at the Nanoscale—A Comprehensive Review of AFM-Based Force Spectroscopy. Int. J. Biol. Macromol. 2023, 238, 124089. [Google Scholar] [CrossRef]
- Vitorino, M.V.; Vieira, A.; Marques, C.A.; Rodrigues, M.S. Direct Measurement of the Capillary Condensation Time of a Water Nanobridge. Sci. Rep. 2018, 8, 13848. [Google Scholar] [CrossRef] [PubMed]
- Borhani, M.R.; Kermani, F. Development of Superhydrophobic Fractal Surfaces Using Silica Nanoparticles Based on Polylactic Acid through Molding Technique. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134534. [Google Scholar] [CrossRef]
- Jeong, J.-U.; Gunarasan, J.P.C.; Lee, J.-W. Facile Fabrication of Microstructured Superhydrophilic and Superhydrophobic STS316L. Curr. Appl. Phys. 2024, 65, 60–67. [Google Scholar] [CrossRef]
- Rahimi, S.; Azizian, S.; Tahzibi, H. Preparation of Superhydrophobic Charcoal Using In-Situ Combustion and Chemical Vapor Deposition of Silicone Oil for Oil-Spill Cleanup. Colloids Surf. A Physicochem. Eng. Asp. 2024, 695, 134287. [Google Scholar] [CrossRef]
Sample | Texture Period, µm | Groove Width, µm | Asperities Surface Features |
---|---|---|---|
St-60-45 | 60 ± 1.9 | 45 ± 1.9 | Crystal |
St-60-45-L | 60 ± 1.9 | 45 ± 1.9 | LIPSS |
St-60-30-L | 60 ± 1.9 | 30 ± 1.2 | LIPSS |
St-100-30-L | 100 ± 2.1 | 30 ± 1.2 | LIPSS |
Al-46-16 | 46 ± 1.9 | 16 ± 1.0 | flat |
Sample | Geometrical (from SEM) | Measured by Wetting | ||
---|---|---|---|---|
St-60-45 | 0.25 ± 0.015 | 0.75 ± 0.045 | 0.087 ± 0.006 | 0.916 ± 0.07 |
St-60-45-L | 0.25 ± 0.015 | 0.75 ± 0.045 | 0.168 ± 0.008 | 0.897 ± 0.07 |
St-60-30-L | 0.50 ± 0.015 | 0.50 ± 0.030 | 0.186 ± 0.008 | 0.858 ± 0.07 |
St-100-30-L | 0.70 ± 0.015 | 0.30 ± 0.015 | 0.349 ± 0.009 | 0.794 ± 0.06 |
Al-46-16 | 0.126 ± 0.008 | 0.874 ± 0.043 | 0.122 ± 0.012 | 0.842 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myronyuk, O.; Vanagas, E.; Rodin, A.M.; Wesolowski, M. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie–Baxter Equation. Materials 2024, 17, 4322. https://doi.org/10.3390/ma17174322
Myronyuk O, Vanagas E, Rodin AM, Wesolowski M. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie–Baxter Equation. Materials. 2024; 17(17):4322. https://doi.org/10.3390/ma17174322
Chicago/Turabian StyleMyronyuk, Oleksiy, Egidijus Vanagas, Aleksej M. Rodin, and Miroslaw Wesolowski. 2024. "Estimation of the Structure of Hydrophobic Surfaces Using the Cassie–Baxter Equation" Materials 17, no. 17: 4322. https://doi.org/10.3390/ma17174322
APA StyleMyronyuk, O., Vanagas, E., Rodin, A. M., & Wesolowski, M. (2024). Estimation of the Structure of Hydrophobic Surfaces Using the Cassie–Baxter Equation. Materials, 17(17), 4322. https://doi.org/10.3390/ma17174322