The Influence of Post-Treatment on Micropore Evolution and Mechanical Performance in AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Experimental Method
3. Results and Discussion
3.1. Microstructure Evolution during Solution Treatment
3.2. Microstructure and Hardness Evolution during Artificial Aging Treatment
3.3. Tensile Properties and In-Situ XCT Analysis
3.4. Facture Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Xie, X.; Wu, H.; Ji, X.; Shen, H.; Xue, M.; Wu, H.; Chao, Q.; Fan, G.; Liu, Q. In-Situ Control of Residual Stress and Its Distribution in a Titanium Alloy Additively Manufactured by Laser Powder Bed Fusion. Mater. Charact. 2023, 201, 112953. [Google Scholar] [CrossRef]
- Wang, H.; Chao, Q.; Chen, H.; Chen, Z.; Primig, S.; Xu, W.; Ringer, S.; Liao, X. Formation of a Transition V-Rich Structure during the α’ to α + β Phase Transformation Process in Additively Manufactured Ti-6Al-4V. Acta Mater. 2022, 235, 118104. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer Nature Switzerland AG: Gewerbestrasse, Switzerland, 2021; pp. 160–186. ISBN 978-3-030-56126-0. [Google Scholar]
- Ma, C.; Fang, Z.; Wu, M.; Miao, X.; Wang, Q. Interfacial Stress Development and Cracking Susceptibility during Laser Powder Bed Fusion of Random TiB2-Particle-Reinforced AlSi10Mg Matrix Composites. Metals 2023, 13, 1405. [Google Scholar] [CrossRef]
- Song, J.; Tang, Q.; Chen, H.; Zhang, Z.; Feng, Q.; Zhao, M.; Ma, S.; Setchi, R. Laser Powder Bed Fusion of High-Strength Maraging Steel with Concurrently Enhanced Strength and Ductility after Heat Treatments. Mater. Sci. Eng. A 2022, 854, 143818. [Google Scholar] [CrossRef]
- Leirmo, J.L.; Baturynska, I. Challenges and Proposed Solutions for Aluminium in Laser Powder Bed Fusion. Procedia CIRP 2020, 93, 114–119. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, W.; Song, B.; Yin, S.; Wang, X.; Wei, Q.; Shi, Y. Towards Understanding Metallurgical Defect Formation of Selective Laser Melted Wrought Aluminum Alloys. Adv. Powder Mater. 2022, 1, 100035. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development. Mater. Des. 2015, 65, 417–424. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Everitt, N.M.; Ashcroft, I.; Tuck, C. Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting. Addit. Manuf. 2014, 1, 77–86. [Google Scholar] [CrossRef]
- Kempen, K.; Thijs, L.; Van Humbeeck, J.; Kruth, J.-P. Processing AlSi10Mg by Selective Laser Melting: Parameter Optimisation and Material Characterisation. Mater. Sci. Technol. 2015, 31, 917–923. [Google Scholar] [CrossRef]
- Mfusi, B.; Tshabalala, L.C.; Popoola, A.; Mathe, N.R. The Effect of Selective Laser Melting Build Orientation on the Mechanical Properties of AlSi10Mg Parts. IOP Conf. Ser. Mater. Sci. Eng. 2018, 430, 012028. [Google Scholar]
- Ponnusamy, P.; Rahman Rashid, R.A.; Masood, S.H.; Ruan, D.; Palanisamy, S. Mechanical Properties of SLM-Printed Aluminium Alloys: A Review. Materials 2020, 13, 4301. [Google Scholar] [CrossRef] [PubMed]
- Felberbaum, M.; Landry-Désy, E.; Weber, L.; Rappaz, M. Effective Hydrogen Diffusion Coefficient for Solidifying Aluminium Alloys. Acta Mater. 2011, 59, 2302–2308. [Google Scholar] [CrossRef]
- Rashid, R.; Masood, S.; Ruan, D.; Palanisamy, S.; Rashid, R.R.; Elambasseril, J.; Brandt, M. Effect of Energy per Layer on the Anisotropy of Selective Laser Melted AlSi12 Aluminium Alloy. Addit. Manuf. 2018, 22, 426–439. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Lu, J.; Luo, K.; Zhang, Z.; Lu, H.; Zhang, H.; Xu, X.; Wang, Y.; Zhou, S. Post-Treatment Technologies for High-Speed Additive Manufacturing: Status, Challenge, and Tendency. J. Mater. Res. Technol. 2024, 30, 1057–1082. [Google Scholar] [CrossRef]
- Xu, R.; Li, R.; Yuan, T.; Yu, C.; Zhu, H. Towards the Hydrogen Pore in Additively Manufactured AlMgScZr Alloy: Influencing Factors, Formation Kinetics Mechanism. J. Mater. Sci. Technol. 2024, 199, 125–144. [Google Scholar] [CrossRef]
- Li, X.; O’donnell, K.; Sercombe, T.B. Selective Laser Melting of Al-12Si Alloy: Enhanced Densification via Powder Drying. Addit. Manuf. 2016, 10, 10–14. [Google Scholar] [CrossRef]
- Xu, R.; Li, R.; Yuan, T.; Niu, P.; Wang, M.; Lin, Z. Microstructure, Metallurgical Defects and Hardness of Al–Cu–Mg–Li–Zr Alloy Additively Manufactured by Selective Laser Melting. J. Alloys Compd. 2020, 835, 155372. [Google Scholar] [CrossRef]
- Weingarten, C.; Buchbinder, D.; Pirch, N.; Meiners, W.; Wissenbach, K.; Poprawe, R. Formation and Reduction of Hydrogen Porosity during Selective Laser Melting of AlSi10Mg. J. Mater. Process. Technol. 2015, 221, 112–120. [Google Scholar] [CrossRef]
- Fiegl, T.; Franke, M.; Körner, C. Correlation of Powder Degradation, Energy Absorption, and Gas Pore Formation in Laser-Based Powder Bed Fusion Process of AlSi10Mg0.4. Addit. Manuf. 2022, 56, 102917. [Google Scholar] [CrossRef]
- Strumza, E.; Hayun, S.; Barzilai, S.; Finkelstein, Y.; Ben David, R.; Yeheskel, O. In situ detection of thermally induced porosity in additively manufactured and sintered objects. J. Mater. Sci. 2019, 54, 8665–8674. [Google Scholar] [CrossRef]
- Alphonse, M.; Raja, V.B.; Vivek, M.; Raj, N.S.D.; Darshan, M.S.S.; Bharmal, P. Effect of Heat Treatment on Mechanical Properties of Forged Aluminium Alloy AA2219. Mater. Today Proc. 2021, 44, 3811–3815. [Google Scholar]
- Syrlybayev, D.; Perveen, A.; Talamona, D. Controlling Mechanical Properties and Energy Absorption in AlSi10Mg Lattice Structures through Solution and Aging Heat Treatments. Mater. Sci. Eng. A 2024, 889, 145843. [Google Scholar] [CrossRef]
- Kempf, A.; Hilgenberg, K. Influence of heat treatments on AlSi10Mg specimens manufactured with different laser powder bed fusion machines. Mater. Sci. Eng. A 2021, 818, 141371. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Jie, J.; Wei, Z. Effects of Yttrium and Heat Treatment on the Microstructure and Tensile Properties of Al–7.5Si–0.5Mg Alloy. Mater. Des. 2011, 32, 1617–1622. [Google Scholar] [CrossRef]
- Gite, R.E.; Wakchaure, V.D. A Review on Process Parameters, Microstructure, and Mechanical Properties of Additively Manufactured AlSi10Mg Alloy. Mater. Today Proc. 2023, 72, 966–986. [Google Scholar] [CrossRef]
- Zhu, S.; Katti, I.; Qiu, D.; Forsmark, J.H.; Easton, M.A. Microstructural Analysis of the Influences of Platform Preheating and Post-Build Heat Treatment on Mechanical Properties of Laser Powder Bed Fusion Manufactured AlSi10Mg Alloy. Mater. Sci. Eng. A 2023, 882, 145486. [Google Scholar] [CrossRef]
- Rosenthal, I.; Stern, A.; Frage, N. Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology. Metallogr. Microstruct. Anal. 2014, 3, 448–453. [Google Scholar] [CrossRef]
- Tang, H.; Gao, C.; Zhang, Y.; Zhang, N.; Lei, C.; Bi, Y.; Tang, P.; Rao, J.H. Effects of Direct Aging Treatment on Microstructure, Mechanical Properties, and Residual Stress of Selective Laser Melted AlSi10Mg Alloy. J. Mater. Sci. Technol. 2023, 139, 198–209. [Google Scholar] [CrossRef]
- Yaru, L.; Tiejun, M.; Tounan, J.; Bo, Z.; Le, Y.; Wenhang, Y.; Hanguang, F. Aging temperature effects on microstructure and mechanical properties for additively manufactured AlSi10Mg. Mater. Sci. Technol. 2023, 39, 1223–1236. [Google Scholar]
- Hastie, J.C.; Koelblin, J.; Kartal, M.E.; Attallah, M.M.; Martinez, R. Evolution of internal pores within AlSi10Mg manufactured by laser powder bed fusion under tension: As-built and heat treated conditions. Mater. Des. 2021, 204, 109645. [Google Scholar] [CrossRef]
- Giovagnoli, M.; Tocci, M.; Fortini, A.; Merlin, M.; Ferroni, M.; Migliori, A.; Pola, A. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy. Mater. Sci. Eng. A 2021, 802, 140671. [Google Scholar] [CrossRef]
- Wei, P.; Chen, Z.; Zhang, S.; Fang, X.; Lu, B.; Zhang, L.; Wei, Z. Effect of T6 Heat Treatment on the Surface Tribological and Corrosion Properties of AlSi10Mg Samples Produced by Selective Laser Melting. Mater. Charact. 2021, 171, 110769. [Google Scholar] [CrossRef]
- Hastie, J.C.; Kartal, M.E.; Carter, L.N.; Attallah, M.M.; Mulvihill, D.M. Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: Influence of processing parameters and heat treatment. Mater. Charact. 2020, 163, 110225. [Google Scholar] [CrossRef]
- Xiong, Z.; Liu, S.; Li, S.; Shi, Y.; Yang, Y.; Misra, R. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater. Sci. Eng. A 2019, 740, 148–156. [Google Scholar] [CrossRef]
- Lam, L.; Zhang, D.; Liu, Z.; Chua, C. Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. Virtual Phys. Prototyp. 2015, 10, 207–215. [Google Scholar] [CrossRef]
- Tammas-Williams, S.; Withers, P.J.; Todd, I.; Prangnell, P. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr. Mater. 2016, 122, 72–76. [Google Scholar] [CrossRef]
- Salandari-Rabori, A.; Diak, B.J.; Fallah, V. Dislocation-obstacle interaction evolution in rate dependent plasticity of AlSi10Mg as-built microstructure by laser powder bed fusion. Mater. Sci. Eng. A 2022, 857, 144043. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Saunders, M.; Suvorova, A.; Zhang, L.; Liu, Y.; Fang, M.; Huang, Z.; Sercombe, T.B. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 2015, 95, 74–82. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 2016, 663, 116–125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, Q.; Qian, J.; Zhang, Y.; Yang, S.; Huang, H.; Chao, Q.; Fan, G. The Influence of Post-Treatment on Micropore Evolution and Mechanical Performance in AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion. Materials 2024, 17, 4319. https://doi.org/10.3390/ma17174319
Pu Q, Qian J, Zhang Y, Yang S, Huang H, Chao Q, Fan G. The Influence of Post-Treatment on Micropore Evolution and Mechanical Performance in AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion. Materials. 2024; 17(17):4319. https://doi.org/10.3390/ma17174319
Chicago/Turabian StylePu, Qing, Jinbiao Qian, Yingwei Zhang, Shangjing Yang, Hongshou Huang, Qi Chao, and Guohua Fan. 2024. "The Influence of Post-Treatment on Micropore Evolution and Mechanical Performance in AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion" Materials 17, no. 17: 4319. https://doi.org/10.3390/ma17174319
APA StylePu, Q., Qian, J., Zhang, Y., Yang, S., Huang, H., Chao, Q., & Fan, G. (2024). The Influence of Post-Treatment on Micropore Evolution and Mechanical Performance in AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion. Materials, 17(17), 4319. https://doi.org/10.3390/ma17174319