AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of AgNPs-x/PDMS-PUTI
2.3. Characterization
2.4. Self-Healing Ability
2.5. Adhesion Test
2.6. Surface Performance
2.7. Antibacterial and Antidiatom Settlement Tests
3. Results
3.1. Structural Characterization
3.2. Self-Healing Performance
3.3. Adhesion Properties
3.4. Surface Properties
3.5. Antibacterial and Anti-Diatom Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akuzov, D.; Brümmer, F.; Vladkova, T. Some possibilities to reduce the biofilm formation on transparent siloxane coatings. Colloids Surf. B Biointerfaces 2013, 104, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, J.-L.; Rittschof, D.; Maki, J.S.; Gu, J.-D. Redirecting marine antibiofouling innovations from sustainable horizons. Trends Ecol. Evol. 2022, 37, 469–472. [Google Scholar] [CrossRef]
- Chen, R.; Xie, Q.; Zeng, H.; Ma, C.; Zhang, G. Non-elastic glassy coating with fouling release and resistance abilities. J. Mater. Chem. A 2020, 8, 380–387. [Google Scholar] [CrossRef]
- Tagg, A.S.; Sperlea, T.; Hassenrück, C.; Kreikemeyer, B.; Fischer, D.; Labrenz, M. Microplastic-antifouling paint particle contamination alters microbial communities in surrounding marine sediment. Sci. Total Environ. 2024, 926, 171863. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Duan, J.; Liu, C.; Liu, X.; Zhu, Y.; Zhai, X.; Zhang, Y.; Wang, W.; Yang, Z.; Hou, B. Transparent and mechanically durable silicone/ZrO2 sol hybrid coating with enhanced antifouling properties. Chem. Eng. J. 2024, 490, 151567. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, Z.; Qi, Y. Effect of the properties of long afterglow phosphors on the antifouling performance of silicone fouling-release coating. Prog. Org. Coat. 2022, 170, 106965. [Google Scholar] [CrossRef]
- Selim, M.S.; Yang, H.; Wang, F.Q.; Fatthallah, N.A.; Huang, Y.; Kuga, S. Silicone/ZnO nanorod composite coating as a marine antifouling surface. Appl. Surf. Sci. 2019, 466, 40–50. [Google Scholar] [CrossRef]
- Sun, J.; Duan, J.; Liu, X.; Dong, X.; Zhang, Y.; Liu, C.; Hou, B. Environmentally benign smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties. Appl. Mater. Today 2022, 28, 101551. [Google Scholar] [CrossRef]
- Sun, J.; Liu, C.; Duan, J.; Liu, J.; Dong, X.; Zhang, Y.; Wang, N.; Wang, J.; Hou, B. Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling. J. Mater. Sci. Technol. 2022, 124, 1–13. [Google Scholar] [CrossRef]
- Nam, J.; Jang, W.; Rajeev, K.K.; Lee, J.-H.; Kim, Y.; Kim, T.-H. Ion-conductive self-healing polymer network based on reversible imine bonding for Si electrodes. J. Power Sources 2021, 499, 229968. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, X.; Jian, R.; Bai, W.; Zheng, G.; Xie, Z.; Lin, Q.; Lin, F.; Xu, Y. In Situ Reduction of Silver Nanoparticles/Urushiol-Based Polybenzoxazine Composite Coatings with Enhanced Antimicrobial and Antifouling Performances. Polymers 2024, 16, 1167. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, G.; Stragliotto, M.F.; Slenk, W.; Valenti, L.E.; Giacomelli, C.E.; Strumia, M.C.; Gomez, C.G. Original antifouling strategy: Polypropylene films modified with chitosan-coated silver nanoparticles. J. Appl. Polym. Sci. 2020, 137, 48448. [Google Scholar] [CrossRef]
- Morante, N.; Folliero, V.; Dell’Annunziata, F.; Capuano, N.; Mancuso, A.; Monzillo, K.; Galdiero, M.; Sannino, D.; Franci, G. Characterization and Photocatalytic and Antibacterial Properties of Ag- and TiOx-Based (x = 2, 3) Composite Nanomaterials under UV Irradiation. Materials 2024, 17, 2178. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, 1701503. [Google Scholar] [CrossRef]
- Shende, S.; Gade, A.; Rai, M. Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ. Chem. Lett. 2017, 15, 427–434. [Google Scholar] [CrossRef]
- Chowdhury, N.R.; MacGregor-Ramiasa, M.; Zilm, P.; Majewski, P.; Vasilev, K. ‘Chocolate’ silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. J. Colloid Interface Sci. 2016, 482, 151–158. [Google Scholar] [CrossRef]
- Vigneswari, S.; Amelia, T.S.; Hazwan, M.H.; Mouriya, G.K.; Bhubalan, K.; Amirul, A.-A.A.; Ramakrishna, S. Transformation of Biowaste for Medical Applications: Incorporation of Biologically Derived Silver Nanoparticles as Antimicrobial Coating. Antibiotics 2021, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, S.; Jiang, Y.; Liu, Q.; Liu, Z.; Song, C.; Wang, C. AgNP Hybrid Organosilicon Antifouling Coating with Spontaneous Self-Healing and Long-Term Antifouling Properties. Ind. Eng. Chem. Res. 2023, 62, 12999–13008. [Google Scholar] [CrossRef]
- Cui, J.; Shao, Y.; Zhang, H.; Zhang, H.; Zhu, J. Development of a novel silver ions-nanosilver complementary composite as antimicrobial additive for powder coating. Chem. Eng. J. 2021, 420, 127633. [Google Scholar] [CrossRef]
- ASTM-D4541 standards; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM: West Conshohocken, PA, USA, 2022.
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Hu, P.; Xie, Q.; Ma, C.; Zhang, G. Fouling resistant silicone coating with self-healing induced by metal coordination. Chem. Eng. J. 2021, 406, 126870. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Y.; Xie, Q.; Chen, Z.; Ma, C.; Zhang, G. Transparent Polymer-Ceramic Hybrid Antifouling Coating with Superior Mechanical Properties. Adv. Funct. Mater. 2021, 31, 2011145. [Google Scholar] [CrossRef]
- Yang, M.; Sun, Y.; Chen, G.; Wang, G.; Lin, S.; Sun, Z. Preparation of a self-healing silicone coating for inhibiting adhesion of benthic diatoms. Mater. Lett. 2020, 268, 127496. [Google Scholar] [CrossRef]
- Chen, G.; Sun, Z.; Wang, Y.; Zheng, J.; Wen, S.; Zhang, J.; Wang, L.; Hou, J.; Lin, C.; Yue, Z. Designed preparation of silicone protective materials with controlled self-healing and toughness properties. Prog. Org. Coat. 2020, 140, 105483. [Google Scholar] [CrossRef]
- Tian, W.; Guo, Z.; Wang, S.; Yu, H.; Wang, S.; Jin, H.; Tian, L. Hydrogen and DA bond-based self-healing epoxy-modified polyurea composite coating with anti-cavitation, anticorrosion, antifouling, and strong adhesion properties. J. Mater. Sci. Technol. 2024, 187, 1–14. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, K.; Li, H.; Lang, C.; Zhang, L. Eco-friendly intrinsic self-healing superhydrophobic polyurea/TiO2 composite coatings for underwater drag reduction and antifouling. Prog. Org. Coat. 2023, 183, 107769. [Google Scholar] [CrossRef]
- Hu, J.; Mo, R.; Sheng, X.; Zhang, X. A self-healing polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds. Polym. Chem. 2020, 11, 2585–2594. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, S.; Zhang, H.; Li, W.; Jiang, L.; Zhou, X. Preparation and performance of self-healing nanocomposite coating with hydrophobic self-cleaning ability. Polym. Compos. 2023, 44, 7972–7984. [Google Scholar] [CrossRef]
- Idumah, C.I.; Obele, C.M.; Emmanuel, E.O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-corrosion, Anti-fouling and Self-healing. Surf. Interfaces 2020, 21, 100734. [Google Scholar] [CrossRef]
- Hu, P.; Xie, R.; Xie, Q.; Ma, C.; Zhang, G. Simultaneous realization of antifouling, self-healing, and strong substrate adhesion via a bioinspired self-stratification strategy. Chem. Eng. J. 2022, 449, 137875. [Google Scholar] [CrossRef]
- Tran, T.; Tu, Y.-C.; Hall-Laureano, S.; Lin, C.; Kawy, M.; Lin, H. “Nonstick” Membranes Prepared by Facile Surface Fluorination for Water Purification. Ind. Eng. Chem. Res. 2020, 59, 5307–5314. [Google Scholar] [CrossRef]
- Ober, C. Fifty years of the Baier curve: Progress in understanding antifouling coatings. Green Mater. 2017, 5, 1–3. [Google Scholar] [CrossRef]
- Geissel, F.J.; Platania, V.; Gogos, A.; Herrmann, I.K.; Belibasakis, G.N.; Chatzinikolaidou, M.; Sotiriou, G.A. Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. J. Colloid Interface Sci. 2022, 608, 3141–3150. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, J.; Duan, J.; Sui, K.; Zhai, X.; Zhao, X. AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings. Materials 2024, 17, 4289. https://doi.org/10.3390/ma17174289
Liu X, Sun J, Duan J, Sui K, Zhai X, Zhao X. AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings. Materials. 2024; 17(17):4289. https://doi.org/10.3390/ma17174289
Chicago/Turabian StyleLiu, Xingda, Jiawen Sun, Jizhou Duan, Kunyan Sui, Xiaofan Zhai, and Xia Zhao. 2024. "AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings" Materials 17, no. 17: 4289. https://doi.org/10.3390/ma17174289
APA StyleLiu, X., Sun, J., Duan, J., Sui, K., Zhai, X., & Zhao, X. (2024). AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings. Materials, 17(17), 4289. https://doi.org/10.3390/ma17174289