Influence of the Composition of Provisional Luting Materials on the Bond Strength of Temporary Single-Tooth Crowns on Titanium Abutments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Simulated Initial Bond Strength after 24 h of Storage in Distilled Water
3.2. Simulated Short-Term Bond Strength after Seven Days of Storage in Distilled Water
3.3. Simulated Long-Term Bond Strength after 12 h of Storage in Distilled Water Followed by Thermocycling
3.4. Performance of the Individual Luting Materials
4. Discussion
5. Conclusions
- (1)
- Under in vitro conditions, two of the three resin-based materials can produce a stronger bond between temporary single-tooth crowns made of bis-acrylate and titanium abutment surfaces than conventional zinc oxide-based cements, regardless of the storage time or other artificial aging. However, there are major differences to be found between the individual materials of the resin-based material class, which can be attributed to their different ingredients and composition. Zinc oxide-based materials demonstrate a more consistent performance in this respect;
- (2)
- Zinc oxide cements show a significant loss of retention during the simulated long-term provisional restoration period compared to initial bond strength and simulated short-term intraoral use. This could not be observed with the resin-based materials. Here, very inhomogeneous results were observed between the three materials: while one material showed the lowest bond strength after long-term temporary storage, one material showed the highest bond strength. The third material, on the other hand, showed a better bond strength compared to short-term temporary storage, but a lower bond strength compared to initial storage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Material Class Based on the Components | Name, Manufacturer | Abbreviation Dosage Form |
---|---|---|
zinc oxide-based temporary luting materials with eugenol | Temp Bond, Kerr, GER | Base paste: zinc oxide, white mineral oil (petroleum) Catalyst paste: eugenol, zinc acetate dihydrate, resin, oligomers |
TempoCem, DMG, GER | Base paste: zinc oxide, paraffin, additives Catalyst paste: natural resins, eugenol, additives | |
3M RelyX Temp E, ESPE, USA | Base paste: zinc oxide, white mineral oil (petroleum), petrolatum Catalyst paste: hydrogenated colophony, modified colophony, eugenol, silanized silica, aliphatic acid | |
zinc oxide-based temporary luting materials without eugenol | Temp Bond NE, Kerr, GER | Base paste: zinc oxide, white mineral oil Catalyst paste: octanoic acid, 2-ethoxybenzoic acid, (R)-p-mentha-1,8-diene, d-limonene |
TempoCemNE, DMG, GER | Base paste: zinc oxide, paraffin, additives Catalyst paste: natural resins, fatty acids, additives | |
3M RelyX Temp NE, ESPE, USA | Base paste: zinc oxide, white mineral oil (petroleum), petrolatum Catalyst paste: modified colophony, aliphatic acid, silanized silica | |
resin-based temporary luting materials | Temp Bond Clear, Kerr, GER | Base paste: acrylate resin, 2-hydroxyethyl methacrylate, silica Catalyst paste: acrylate resin, α,α-dimethylbenzyl hydroperoxide, cumene hydroperoxide, 2,6-di-tert-butyl-p-cresol, silica |
TempoCem ID, DMG, GER | Dental glass, ethoxylated bisphenol A dimethacrylate, aliphatic urethane methacrylate, unsaturated polyester resin blend, triethylene-glycol-dimethacrylate, 2-hydroxyethyl methacrylate, silicium dioxide, additives | |
Bifix Temp, VOCO, GER | Urethan-dimethacrylat, triethylenglycoldimethacrylat, catalyst |
References
- Siadat, H.; Alikhasi, M.; Beyabanaki, E. Interim prosthesis options for dental implants. J. Prosthodont. 2017, 26, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Priest, G. Esthetic potential of single-implant provisional restorations: Selection criteria of available alternatives. J. Esthet. Restor. Dent. 2006, 18, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Santosa, R.E. Provisional restoration options in implant dentistry. Aust. Dent. J. 2007, 52, 234–242; quiz 254. [Google Scholar] [CrossRef] [PubMed]
- Wassell, R.W.; St George, G.; Ingledew, R.P.; Steele, J.G. Crowns and other extra-coronal restorations: Provisional restorations. Br. Dent. J. 2002, 192, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Lowe, R.A. Dental cements: An overview. Dent. Today 2011, 30, 138, 140–143. [Google Scholar]
- Nematollahi, F.; Beyabanaki, E.; Alikhasi, M. Cement selection for cement-retained implant-supported prostheses: A literature review. J. Prosthodont. 2016, 25, 599–606. [Google Scholar] [CrossRef]
- Wingo, K. A review of dental cements. J. Vet. Dent. 2018, 35, 18–27. [Google Scholar] [CrossRef]
- Leung, G.K.; Wong, A.W.; Chu, C.H.; Yu, O.Y. Update on dental luting materials. Dent J 2022, 10, 208. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Coelho, P.G.; Janal, M.N.; Silva, N.R.; Monteiro, A.J.; Fernandes, C.A. The influence of temporary cements on dental adhesive systems for luting cementation. J. Dent. 2011, 39, 255–262. [Google Scholar] [CrossRef]
- Keum, E.C.; Shin, S.Y. A comparison of retentive strength of implant cement depending on various methods of removing provisional cement from implant abutment. J. Adv. Prosthodont. 2013, 5, 234–240. [Google Scholar] [CrossRef]
- Song, M.Y.; An, H.; Park, E.J. The effect of temporary cement cleaning methods on the retention of crowns. J. Prosthodont. 2019, 28, e210–e215. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.E.; Lott, J. A clinically focused discussion of luting materials. Aust. Dent. J. 2011, 56 (Suppl. S1), 67–76. [Google Scholar] [CrossRef]
- Lawson, N.C.; Burgess, J.O.; Mercante, D. Crown retention and flexural strength of eight provisional cements. J. Prosthet. Dent. 2007, 98, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Heboyan, A.; Vardanyan, A.; Karobari, M.I.; Marya, A.; Avagyan, T.; Tebyaniyan, H.; Mustafa, M.; Rokaya, D.; Avetisyan, A. Dental luting cements: An updated Comprehensive Review. Molecules 2023, 28, 1619. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.F.; Darnell, L.A. Considerations for proper selection of dental cements. Compend. Contin. Educ. Dent. 2012, 33, 28–30, 32, 34, 35; quiz 36, 38. [Google Scholar] [PubMed]
- Bömicke, W. Befestigungsmaterialien in der restaurativen Zahnheilkunde. Wissen Kompakt 2015, 9, 163–178. [Google Scholar] [CrossRef]
- Moecke, S.E.; Silva, A.; Borges, A.B.; Torres, C.R.G. Optical properties of esthetic temporary cements and final restoration color. J. Am. Dent. Assoc. 2023, 154, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.M.O.; Borges, A.B.; Caneppele, T.M.F.; Torres, C.R.G. Influence of interim cements on the optical properties of interim restorations. J. Prosthet. Dent. 2019, 121, 821–827. [Google Scholar] [CrossRef]
- ISO 3107:2022-09; Dentistry—Zinc Oxide-Eugenol Cements and Non-Eugenol Zinc Oxide Cements. International Organization for Standardization: Geneva, Switzerland, 2022.
- Blender, S.M.; Mellinghoff, J.; Groller, S.B.; Schnutenhaus, S.; Kuhn, K.; Luthardt, R.G.; Rudolph, H. Effects of abutment height and type of cements on bond strength of monolithic zirconia single crowns luted to one-piece zirconia implants. Int. J. Prosthodont. 2022, 35, 442–452. [Google Scholar] [CrossRef]
- Carnaggio, T.V.; Conrad, R.; Engelmeier, R.L.; Gerngross, P.; Paravina, R.; Perezous, L.; Powers, J.M. Retention of CAD/CAM all-ceramic crowns on prefabricated implant abutments: An in vitro comparative study of luting agents and abutment surface area. J. Prosthodont. 2012, 21, 523–528. [Google Scholar] [CrossRef]
- Dahne, F.; Meissner, H.; Boning, K.; Arnold, C.; Gutwald, R.; Prause, E. Retention of different temporary cements tested on zirconia crowns and titanium abutments in vitro. Int. J. Implant Dent. 2021, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Gultekin, P.; Gultekin, B.A.; Aydin, M.; Yalcin, S. Cement selection for implant-supported crowns fabricated with different luting space settings. J. Prosthodont. 2013, 22, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Yamashita, J.; Shotwell, J.L.; Chong, K.H.; Wang, H.L. The comparison of provisional luting agents and abutment surface roughness on the retention of provisional implant-supported crowns. J. Prosthet. Dent. 2006, 95, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.; Rauch, A.; Reissmann, D.R.; Schierz, O. Impact of cement type and abutment height on pull-off force of zirconia reinforced lithium silicate crowns on titanium implant stock abutments: An in vitro study. BMC Oral Health 2021, 21, 592. [Google Scholar] [CrossRef] [PubMed]
- Naumova, E.A.; Roth, F.; Geis, B.; Baulig, C.; Arnold, W.H.; Piwowarczyk, A. Influence of luting materials on the retention of cemented implant-supported crowns: An in vitro study. Materials 2018, 11, 1853. [Google Scholar] [CrossRef] [PubMed]
- Sarfaraz, H.; Hassan, A.; Shenoy, K.K.; Shetty, M. An in vitro study to compare the influence of newer luting cements on retention of cement-retained implant-supported prosthesis. J. Indian Prosthodont. Soc. 2019, 19, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Sheets, J.L.; Wilcox, C.; Wilwerding, T. Cement selection for cement-retained crown technique with dental implants. J. Prosthodont. 2008, 17, 92–96. [Google Scholar] [CrossRef]
- Degirmenci, K.; Saridag, S. Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study. J. Adv. Prosthodont. 2020, 12, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Choi, H.; Kang, Y.; Moon, H.; Oh, K. Retentive strength of cement-retained implant-supported fixed dental prostheses according to different cement types and cementation protocols: An in vitro study. Int. J. Prosthodont. 2024, 1–29. [Google Scholar] [CrossRef]
- Chiluka, L.; Shastry, Y.M.; Gupta, N.; Reddy, K.M.; Prashanth, N.B.; Sravanthi, K. An In vitro Study to Evaluate the Effect of Eugenol-free and Eugenol-containing Temporary Cements on the Bond Strength of Resin Cement and Considering Time as a Factor. J. Int. Soc. Prev. Community Dent. 2017, 7, 202–207. [Google Scholar] [CrossRef]
- Hendi, A.; Falahchai, M.; Sigaroodi, S.H.; Asli, H.N. Comparison of marginal leakage and retentive strength of implant-supported milled zirconia and cobalt-chromium copings cemented with different temporary cements. Dent. Res. J. 2023, 20, 119. [Google Scholar]
- Nagasawa, Y.; Hibino, Y.; Nakajima, H. Retention of crowns cemented on implant abutments with temporary cements. Dent. Mater. J. 2014, 33, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Breeding, L.C.; Dixon, D.L.; Bogacki, M.T.; Tietge, J.D. Use of luting agents with an implant system: Part I. J. Prosthet. Dent. 1992, 68, 737–741. [Google Scholar] [CrossRef]
- Lewinstein, I.; Block, L.; Lehr, Z.; Ormianer, Z.; Matalon, S. An in vitro assessment of circumferential grooves on the retention of cement-retained implant-supported crowns. J. Prosthet. Dent. 2011, 106, 367–372. [Google Scholar] [CrossRef]
- Heintze, S.D. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dent. Mater. 2013, 29, 59–84. [Google Scholar] [CrossRef]
- Heintze, S.D.; Rousson, V.; Mahn, E. Bond strength tests of dental adhesive systems and their correlation with clinical results—A meta-analysis. Dent. Mater. 2015, 31, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Rego, M.R.; Santiago, L.C. Retention of provisional crowns cemented with eight temporary cements: Comparative study. J. Appl. Oral. Sci. 2004, 12, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Mehl, C.; Harder, S.; Schwarz, D.; Steiner, M.; Vollrath, O.; Kern, M. In vitro influence of ultrasonic stress, removal force preload and thermocycling on the retrievability of implant-retained crowns. Clin. Oral. Implants Res. 2012, 23, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Mehl, C.; Harder, S.; Shahriari, A.; Steiner, M.; Kern, M. Influence of abutment height and thermocycling on retrievability of cemented implant-supported crowns. Int. J. Oral Maxillofac. Implant. 2012, 27, 1106–1115. [Google Scholar]
- Rues, S.; Fugina, M.; Rammelsberg, P.; Kappel, S. Cemented Single Crown Retention on Dental Implants: An In Vitro Study. Int. J. Prosthodont. 2017, 30, 133–135. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Cano-Batalla, J.; Soliva-Garriga, J.; Campillo-Funollet, M.; Munoz-Viveros, C.A.; Giner-Tarrida, L. Influence of abutment height and surface roughness on in vitro retention of three luting agents. Int. J. Oral Maxillofac. Implant. 2012, 27, 36–41. [Google Scholar]
- Elshiyab, S.H.; Nawafleh, N.; George, R. Survival and testing parameters of zirconia-based crowns under cyclic loading in an aqueous environment: A systematic review. J. Investig. Clin. Dent. 2017, 8, e12261. [Google Scholar] [CrossRef] [PubMed]
- Elshiyab, S.H.; Nawafleh, N.; Walsh, L.; George, R. Fracture resistance and survival of implant-supported, zirconia-based hybrid-abutment crowns: Influence of aging and crown structure. J. Investig. Clin. Dent. 2018, 9, e12355. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Villar, S.; Cano-Batalla, J.; Cabratosa-Termes, J.; Canto-Naves, O.; Arregui, M. Fracture Resistance of Two Different Composite Resin CAD/CAM Crowns Bonded to Titanium Abutments. Int. J. Prosthodont. 2020, 33, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Rödiger, M.; Kloß, J.; Gersdorff, N.; Bürgers, R.; Rinke, S. Removal forces of adhesively and self-adhesively luted implant-supported zirconia copings depend on abutment geometry. J. Mech. Behav. Biomed. Mater. 2018, 87, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D. Crown pull-off test (crown retention test) to evaluate the bonding effectiveness of luting agents. Dent. Mater. 2010, 26, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Haller, B.; Klaiber, B.; Tarenz, O.; Hofmann, N. Shear bond strength between composite inlay and luting composite resin. Dtsch. Zahnarztl. Z. 1990, 45, 669–672. [Google Scholar]
- Lepe, X.; Bales, D.J.; Johnson, G.H. Retention of provisional crowns fabricated from two materials with the use of four temporary cements. J. Prosthet. Dent. 1999, 81, 469–475. [Google Scholar] [CrossRef]
- Abbo, B.; Razzoog, M.E.; Vivas, J.; Sierraalta, M. Resistance to dislodgement of zirconia copings cemented onto titanium abutments of different heights. J. Prosthet. Dent. 2008, 99, 25–29. [Google Scholar] [CrossRef]
- Rödiger, M.; Rinke, S.; Ehret-Kleinau, F.; Pohlmeyer, F.; Lange, K.; Bürgers, R.; Gersdorff, N. Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation. J. Adv. Prosthodont. 2014, 6, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Saleh Saber, F.; Abolfazli, N.; Nuroloyuni, S.; Khodabakhsh, S.; Bahrami, M.; Nahidi, R.; Zeighami, S. Effect of Abutment Height on Retention of Single Cement-retained, Wide- and Narrow-platform Implant-supported Restorations. J. Dent. Res. Dent. Clin. Dent. Prospect. 2012, 6, 98–102. [Google Scholar] [CrossRef]
- Tiu, J.; Al-Amleh, B.; Waddell, J.N.; Duncan, W.J. Reporting numeric values of complete crowns. Part 2: Retention and resistance theories. J. Prosthet. Dent. 2015, 114, 75–80. [Google Scholar] [CrossRef] [PubMed]
Material Class Based on the Components | Name, Manufacturer | Abbreviation | Dosage Form |
---|---|---|---|
zinc oxide-based temporary luting materials with eugenol | Temp Bond, Kerr Corporation, Orange, CA, USA, | TBeu | 2 tubes, manual mixing |
TempoCem, DMG GmbH, Hamburg, Germany | TCeu | Smartmix syringe | |
3M RelyX Temp E, 3M ESPE, Neuss, Germany | RTeu | 2 tubes, manual mixing | |
zinc oxide-based temporary luting materials without eugenol | Temp Bond NE, Kerr Corporation, Orange, CA, USA | TBne | 2 tubes, manual mixing |
TempoCemNE, DMG GmbH, Hamburg, Germany | TCne | Smartmix syringe | |
3M RelyX Temp NE,3M ESPE, Neuss, Germany | RTne | 2 tubes, manual mixing | |
resin-based temporary luting materials | Temp Bond Clear, Kerr Corporation, Orange, CA, USA | TBco | Smartmix syringe |
TempoCem ID, DMG GmbH, Hamburg, Germany | TCco | Smartmix syringe | |
Bifix Temp, VOCO GmbH, Cuxhaven, Germany | BTco | Smartmix syringe |
Mean (±Standard Deviation) | ||||
---|---|---|---|---|
24 h | 7 days | TC | ||
TB eu | in MPa | 1.48 (±0.16) | 1.26 (±0.08) | 1.39 (±0.15) |
in N | 97.62 (±10.39) | 83.00 (±5.14) | 91.54 (±10.01) | |
TC eu | in MPa | 1.37 (±0.19) | 1.37 (±0.18) | 1.00 (±0.28) |
in N | 90.42 (±12.33) | 90.37 (±11.97) | 65.81 (±18.21) | |
RT eu | in MPa | 1.26 (±0.27) | 1.20 (±0.28) | 0.50 (±0.25) |
in N | 82.93 (±18.03) | 78.73 (±18.72) | 32.79 (±16.16) | |
TB ne | in MPa | 1.71 (±0.26) | 1.41 (±0.20) | 0.81 (±0.23) |
in N | 112.46 (±16.99) | 92.67 (±13.01) | 53.58 (±15.33) | |
TC ne | in MPa | 1.42 (±0.14) | 1.52 (±0.31) | 0.84 (±0.44) |
in N | 93.70 (±9.21) | 100.47 (±20.15) | 55.11 (±29.19) | |
RT ne | in MPa | 2.18 (±0.38) | 1.92 (±0.19) | 0.86 (±0.37) |
in N | 143.90 (±25.31) | 126.51 (±12.55) | 56.77 (±24.73) | |
TB co | in MPa | 2.03 (±0.40) | 1.71 (±0.57) | 2.41 (±0.48) |
in N | 134.00 (±26.30) | 112.85 (±37.73) | 159.40 (±31.63) | |
TC co | in MPa | 4.68 (±0.54) | 3.79 (±0.64) | 3.92 (±1.09) |
in N | 308.50 (±35.74) | 249.90 (±42.09) | 258.30 (±71.56) | |
BT co | in MPa | 6.19 (±1.08) | 4.94 (±0.74) | 4.19 (±1.04) |
in N | 407.80 (±71.10) | 325.60 (±48.73) | 276.10 (±68.66) |
Intraindividual Differences between Different Storage Scenarios | ||||||
---|---|---|---|---|---|---|
24 h vs. 7 d | 7 d vs. TC | 24 h vs. TC | ||||
24 h in MPa | 7 d in MPa | 7d in MPa | TC h in MPa | 24 h in MPa | TC in MPa | |
TBeu | 1.48 (±0.16) | 1.26 (±0.08) | 1.26 (±0.08) | 1.39 (±0.15) | 1.48 (±0.16) | 1.39 (±0.15) |
p = 0.003 ** | p = 0.099 | p = 0.284 | ||||
TCeu | 1.37 (±0.19) | 1.37 (±0.18) | 1.37 (±0.18) | 1.00 (±0.28) | 1.37 (±0.19) | 1.00 (±0.28) |
p = 1.000 | p = 0.002 ** | p = 0.002 ** | ||||
RTeu | 1.26 (±0.27) | 1.20 (±0.28) | 1.20 (±0.28) | 0.50 (±0.25) | 1.26 (±0.27) | 0.50 (±0.25) |
p = 0.863 | p < 0.001 ** | p < 0.001 ** | ||||
TBne | 1.71 (±0.26) | 1.41 (±0.20) | 1.41 (±0.20) | 0.81 (±0.23) | 1.71 (±0.26) | 0.81 (±0.23) |
p = 0.019 ** | p < 0.001 ** | p < 0.001 ** | ||||
TCne * | 1.42 (±0.14) | 1.52 (±0.31) | 1.52 (±0.31) | 0.84 (±0.44) | 1.42 (±0.14) | 0.84 (±0.44) |
p = 0.610 | p = 0.003 ** | p = 0.006 ** | ||||
RTne | 2.18 (±0.38) | 1.92 (±0.19) | 1.92 (±0.19) | 0.86 (±0.37) | 2.18 (±0.38) | 0.86 (±0.37) |
p = 0.187 | p < 0.001 ** | p < 0.001 ** | ||||
TBco | 2.03 (±0.40) | 1.71 (±0.57) | 1.71 (±0.57) | 2.41 (±0.48) | 2.03 (±0.40) | 2.41 (±0.48) |
p = 0.320 | p = 0.009 ** | p = 0.202 | ||||
TCco | 4.68 (±0.54) | 3.79 (±0.64) | 3.79 (±0.64) | 3.92 (±1.09) | 4.68 (±0.54) | 3.92 (±1.09) |
p = 0.046 ** | p = 0.931 | p = 0.097 | ||||
BTco | 6.19 (±1.08) | 4.94 (±0.74) | 4.94 (±0.74) | 4.19 (±1.04) | 6.19 (±1.08) | 4.19 (±1.04) |
p = 0.020 ** | p = 0.209 | p < 0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maubach, C.; Rudolph, H.; Happe, A.; Luthardt, R.G.; Kuhn, K.; Blender, S.M. Influence of the Composition of Provisional Luting Materials on the Bond Strength of Temporary Single-Tooth Crowns on Titanium Abutments. Materials 2024, 17, 4239. https://doi.org/10.3390/ma17174239
Maubach C, Rudolph H, Happe A, Luthardt RG, Kuhn K, Blender SM. Influence of the Composition of Provisional Luting Materials on the Bond Strength of Temporary Single-Tooth Crowns on Titanium Abutments. Materials. 2024; 17(17):4239. https://doi.org/10.3390/ma17174239
Chicago/Turabian StyleMaubach, Christina, Heike Rudolph, Arndt Happe, Ralph G. Luthardt, Katharina Kuhn, and Sarah M. Blender. 2024. "Influence of the Composition of Provisional Luting Materials on the Bond Strength of Temporary Single-Tooth Crowns on Titanium Abutments" Materials 17, no. 17: 4239. https://doi.org/10.3390/ma17174239
APA StyleMaubach, C., Rudolph, H., Happe, A., Luthardt, R. G., Kuhn, K., & Blender, S. M. (2024). Influence of the Composition of Provisional Luting Materials on the Bond Strength of Temporary Single-Tooth Crowns on Titanium Abutments. Materials, 17(17), 4239. https://doi.org/10.3390/ma17174239