Effect of Partial Substitution of Zr for Ti Solvent on Young’s Modulus, Strength, and Biocompatibility in Beta Ti Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alloy Composition Design and Preparation of Ingot
2.2. Microstructural Observation
2.3. Phase Identification by X-ray Diffraction
2.4. Mechanical Property Evaluation by Compression Testing
2.5. Microstructural Analysis by Transmission Electron Microscopy
2.6. Evaluation of Biocompatibility
2.7. Statistical Analyses
3. Results and Discussion
3.1. Phase Constitution and Microstructure
3.2. Mechanical Properties
3.3. ω Phase Formation
3.4. Biocompatibility
3.5. Advantages and Challenges of This Alloy as a Bone Biomaterial
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niinomi, M.; Nakai, M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 2011, 836587. [Google Scholar] [CrossRef] [PubMed]
- Zadpoor, A.A. Additively manufactured porous metallic biomaterials. J. Mater. Chem. B 2019, 7, 4088–4117. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, L.; Fan, Y. Metallic meta-biomaterials: A critical review of fatigue behaviors. J. Sci. Adv. Mater. Devices 2023, 8, 100585. [Google Scholar] [CrossRef]
- He, S.; Zhu, J.; Jing, Y.; Long, S.; Tang, L.; Cheng, L.; Shi, Z. Effect of 3D-printed porous titanium alloy pore structure on bone regeneration: A review. Coatings 2024, 14, 253. [Google Scholar] [CrossRef]
- Wong, K.K.; Hsu, H.C.; Wu, S.C.; Ho, W.F. A review: Design from beta titanium alloys to medium-entropy alloys for biomedical applications. Materials 2023, 16, 7046. [Google Scholar] [CrossRef] [PubMed]
- Tane, M.; Akita, S.; Nakano, T.; Hagihara, K.; Umakoshi, Y.; Niinomi, M.; Mori, H.; Nakajima, H. Low Young’s modulus of Ti–Nb–Ta–Zr alloys caused by softening in shear moduli c′ and c44 near lower limit of body-centered cubic phase stability. Acta Mater. 2010, 58, 6790–6798. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Matsuzaka, T.; Hyakubu, A.; Kim, Y.S.; Matsugaki, A.; Nagase, T.; Ishimoto, T.; Ozasa, R.; Kim, H.S.; Mizuguchi, T.; Gokcekaya, O.; et al. Development of an equiatomic octonary TiNbTaZrMoHfWCr super-high-entropy alloy for biomedical applications. Mater. Chem. Phys. 2024, 316, 129120. [Google Scholar] [CrossRef]
- ISO 5832-14; Implant for Surgery—Metallic Materials— Part 14: Wrought Titanium 15-molybdenum 5-zirconium 3-aluminum Alloy. International Organization for Standardization: Geneva, Switzerland, 2019.
- Tane, M.; Hagihara, K.; Ueda, M.; Nakano, T.; Okuda, Y. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-based alloys with low body-centered cubic phase stability. Acta Mater. 2016, 102, 373–384. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Yang, Z.; Liang, X.; Lei, Z.; Huang, H.; Wang, H.; Liu, X.; An, K.; Wu, W.; et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019, 7, 225–231. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, Y.; Han, J.; Srolovitz, D.J. The effect of randomness on the strength of high-entropy alloys. Acta Mater. 2019, 166, 424–434. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkava, S.V.; Miracle, D.D.; Woodward, C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloy. Compd. 2011, 509, 6043–6048. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- He, Q.; Yang, Y. On lattice distortion in high entropy alloys. Front. Mater. 2018, 5, 42. [Google Scholar] [CrossRef]
- Koizumi, H.; Ishii, T.; Okazaki, T.; Kaketani, M.; Matsumura, H.; Yoneyama, T. Castability and mechanical properties of Ti-15Mo-5Zr-3Al alloy in dental casting. J. Oral Sci. 2018, 60, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Okafor, I.C.I.; Watanabe, I.; Hattori, M.; Oda, Y.; Okabe, T. Mechanical properties of cast Ti-6Al-4V-XCu alloys. J. Oral Rehabil. 2004, 31, 1109–1114. [Google Scholar] [CrossRef]
- Sikka, S.K.; Vohra, Y.K.; Chidambaram, R. Omega phase in materials. Prog. Mater. Sci. 1982, 27, 245–310. [Google Scholar] [CrossRef]
- Lee, T.; Nakai, M.; Niinomi, M.; Park, C.H.; Lee, C.S. Phase transformation and its effect on mechanical characteristics in warm-deformed Ti-29Nb-13Ta-4.6Zr alloy. Metal. Mater. Int. 2015, 21, 202–207. [Google Scholar] [CrossRef]
- Tane, M.; Nishiyama, H.; Umeda, A.; Okamoto, N.L.; Inoue, K.; Luckabauer, M.; Nagai, Y.; Sekino, T.; Nakano, T.; Ichitsubo, T. Diffusionless isothermal omega transformation in titanium alloys driven by quenched-in compositional fluctuations. Phys. Rev. Mater. 2019, 3, 043604. [Google Scholar] [CrossRef]
- Zhao, X.; Niinomi, M.; Nakai, M.; Hieda, J.; Ishimoto, T.; Nakano, T. Optimization of Cr content of metastable β-type Ti–Cr alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2012, 8, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- Tane, M.; Okuda, Y.; Todaka, Y.; Ogi, H.; Nagakubo, A. Elastic properties of single-crystalline ω phase in titanium. Acta Mater. 2013, 61, 7543–7554. [Google Scholar] [CrossRef]
- Williams, J.C.; Hickman, B.S.; Leslie, D.H. The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys. Metall. Trans. 1971, 2, 477–484. [Google Scholar] [CrossRef]
- Tan, T.; Zhao, Q.; Kuwae, H.; Ueno, T.; Chen, P.; Tsutsumi, T.; Mizuno, J.; Hanawa, T.; Wakabayashi, N. Surface properties and biocompatibility of sandblasted and acid-etched titanium–zirconium binary alloys with various compositions. Dent. Mater. J. 2022, 41, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Ueno, T.; Wakabayashi, N. A review in titanium-zirconium binary alloy for use in dental implants: Is there an ideal Ti-Zr composing ratio? Jpn. Dent. Sci. Rev. 2023, 59, 28–37. [Google Scholar] [CrossRef]
- Liang, S. Review of the design of titanium alloys with low elastic modulus as implant materials. Adv. Eng. Mater. 2020, 22, 2000555. [Google Scholar] [CrossRef]
Alloy | Ti | Zr | Mo | Al | V |
---|---|---|---|---|---|
Atomic radius, (Å) | 1.462 | 1.603 | 1.363 | 1.432 | 1.316 |
Valence electron number, e (-) | 4 | 4 | 6 | 3 | 5 |
Alloy | Ti (at%) | Zr (at%) | Mo (at%) | Al (at%) | V (at%) | e/a |
---|---|---|---|---|---|---|
Ti-15Mo-5Zr-3Al | 83.31 | 2.84 | 8.10 | 5.76 | - | 4.10 |
Zr0 | 86.15 | 0 | 8.10 | 5.76 | - | 4.10 |
Zr25 | 64.61 | 21.54 | 8.10 | 5.76 | - | 4.10 |
Zr50 | 43.07 | 43.07 | 8.10 | 5.76 | - | 4.10 |
Zr75 | 21.54 | 64.61 | 8.10 | 5.76 | - | 4.10 |
Ti-6Al-4V | 86.20 | - | - | 10.20 | 3.60 | 3.93 |
Alloy | (kJ/mol) | |
---|---|---|
Ti-15Mo-5Zr-3Al | −7.27 | 2.55 |
Zr0 | −7.16 | 1.89 |
Zr25 | −8.00 | 4.62 |
Zr50 | −8.83 | 5.45 |
Zr75 | −9.66 | 5.45 |
Ti-6Al-4V | −11.03 | 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomura, Y.; Okada, M.; Manaka, T.; Tsuchiya, T.; Iwasaki, M.; Matsuda, K.; Ishimoto, T. Effect of Partial Substitution of Zr for Ti Solvent on Young’s Modulus, Strength, and Biocompatibility in Beta Ti Alloy. Materials 2024, 17, 2548. https://doi.org/10.3390/ma17112548
Nomura Y, Okada M, Manaka T, Tsuchiya T, Iwasaki M, Matsuda K, Ishimoto T. Effect of Partial Substitution of Zr for Ti Solvent on Young’s Modulus, Strength, and Biocompatibility in Beta Ti Alloy. Materials. 2024; 17(11):2548. https://doi.org/10.3390/ma17112548
Chicago/Turabian StyleNomura, Yusuke, Mio Okada, Tomoyo Manaka, Taiki Tsuchiya, Mami Iwasaki, Kenji Matsuda, and Takuya Ishimoto. 2024. "Effect of Partial Substitution of Zr for Ti Solvent on Young’s Modulus, Strength, and Biocompatibility in Beta Ti Alloy" Materials 17, no. 11: 2548. https://doi.org/10.3390/ma17112548
APA StyleNomura, Y., Okada, M., Manaka, T., Tsuchiya, T., Iwasaki, M., Matsuda, K., & Ishimoto, T. (2024). Effect of Partial Substitution of Zr for Ti Solvent on Young’s Modulus, Strength, and Biocompatibility in Beta Ti Alloy. Materials, 17(11), 2548. https://doi.org/10.3390/ma17112548