N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Fabrication of CMF
2.4. Fabrication of NC@CMF
2.5. MFC Set Up and Operation
2.6. Electrochemical Characterizations
2.7. Microbial Community Analysis
3. Results and Discussions
3.1. Synthesis and Characterization of Anodes
3.2. MFC Performance
3.3. Biofilm Activity and Microbial Community Evaluation
3.4. Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, S.; Patro, A.; Mittal, Y.; Dwivedi, S.; Saket, P.; Panja, R.; Saeed, T.; Martínez, F.; Yadav, A.K. The Race between Classical Microbial Fuel Cells, Sediment-Microbial Fuel Cells, Plant-Microbial Fuel Cells, and Constructed Wetlands-Microbial Fuel Cells: Applications and Technology Readiness Level. Sci. Total Environ. 2023, 879, 162757. [Google Scholar] [CrossRef] [PubMed]
- Greenman, J.; Mendis, B.A.; Gajda, I.; Ieropoulos, I.A. Microbial Fuel Cell Compared to a Chemostat. Chemosphere 2022, 296, 133967. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Nghiem, L.D.; Ni, B.J. Challenges in the Application of Microbial Fuel Cells to Wastewater Treatment and Energy Production: A Mini Review. Sci. Total Environ. 2018, 639, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodzadeh, F.; Navidjouy, N.; Alizadeh, S.; Rahimnejad, M. Investigation of Microbial Fuel Cell Performance Based on the Nickel Thin Film Modified Electrodes. Sci. Rep. 2023, 13, 20775. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Flores, S.; De la Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Rojas-Villacorta, W.; Romero, C.V. Bioelectricity through Microbial Fuel Cells Using Avocado Waste. Energy Rep. 2022, 8, 376–382. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Gamal, S.; Kim, H.Y.; Abd El-Salam, N.M.; Fouad, H.; Fadali, O.A.; Moustafa, H.M.; Abdelraheem, O.H. Synergistic Advancements in Sewage-Driven Microbial Fuel Cells: Novel Carbon Nanotube Cathodes and Biomass-Derived Anodes for Efficient Renewable Energy Generation and Wastewater Treatment. Front. Chem. 2023, 11, 1286572. [Google Scholar] [CrossRef]
- Rani, G.; Jaswal, V.; Yogalakshmi, K.N. Chapter 9—Anode Modification: An Approach to Improve Power Generation in Microbial Fuel Cells (MFCs). In Development in Wastewater Treatment Research and Processes; Shah, M.P., Rodriguez-Couto, S., Kumar Nadda, A., Daverey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 133–152. [Google Scholar]
- Geetanjali; Rani, R.; Kumar, S. High-Capacity Polyaniline-Coated Molybdenum Oxide Composite as an Effective Catalyst for Enhancing the Electrochemical Performance of the Microbial Fuel Cell. Int. J. Hydrogen Energy 2019, 44, 16933–16943. [Google Scholar] [CrossRef]
- Han, S.; Thapa, K.; Liu, W.; Westenberg, D.; Wang, R. Enhancement of Electricity Production of Microbial Fuel Cells by Using DNA Nanostructures as Electron Mediator Carriers. ACS Sustain. Chem. Eng. 2022, 10, 16189–16196. [Google Scholar] [CrossRef]
- Lamp, J.L.; Guest, J.S.; Naha, S.; Radavich, K.A.; Love, N.G.; Ellis, M.W.; Puri, I.K. Flame Synthesis of Carbon Nanostructures on Stainless Steel Anodes for Use in Microbial Fuel Cells. J. Power Sources 2011, 196, 5829–5834. [Google Scholar] [CrossRef]
- Agrahari, R.; Bayar, B.; Abubackar, H.N.; Giri, B.S.; Rene, E.R.; Rani, R. Advances in the Development of Electrode Materials for Improving the Reactor Kinetics in Microbial Fuel Cells. Chemosphere 2022, 290, 133184. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elrahman, N.K.; Al-Harbi, N.; Basfer, N.M.; Al-Hadeethi, Y.; Umar, A.; Akbar, S. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules 2022, 27, 7483. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Feng, Y.; Jia, J.; Zhao, F.; Wu, Z.; Long, P.; Li, F.; Yu, H.; Yang, C.; Liu, Q.; et al. Three-Dimensional N-Doped Carbon Nanotube/Graphene Composite Aerogel Anode to Develop High-Power Microbial Fuel Cell. Energy Environ. Mater. 2022, 6, e12373. [Google Scholar] [CrossRef]
- Gomaa, O.M.; Selim, N.S.; Fathy, R.; Hamed, H. Promoting Bacteria-Anode Interfacial Electron Transfer by Palladium Nano-Complex in Double Chamber Microbial Fuel Cell. Environ. Technol. 2019, 42, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Li, S.; Kong, D.S.; Song, Y.E.; Park, S.-Y.; Kim, H.-i.; Jae, J.; Chung, I.; Kim, J.R. Polydopamine/Polypyrrole-Modified Graphite Felt Enhances Biocompatibility for Electroactive Bacteria and Power Density of Microbial Fuel Cell. Chemosphere 2023, 313, 137388. [Google Scholar] [CrossRef] [PubMed]
- Arun, J.; Sundarrajan, P.; Pavithra, K.G.; Priyadharsini, P.; Shyam, S.; Goutham, R.; Le, Q.H.; Pugazhendhi, A. New Insights into Microbial Electrolysis Cells (MEC) and Microbial Fuel Cells (MFC) for Simultaneous Wastewater Treatment and Green Fuel (Hydrogen) Generation. Fuel 2024, 355, 129530. [Google Scholar] [CrossRef]
- Budania, Y.; Mishra, S.; Mishra, A.; Jana, A.; Modi, A.; Tyagi, A.; Kumar, P.; Singh, S. Multi-Heteroatom Doped Vehicle Exhaust Soot Derived Nano-Onion Based Economical and Efficient Electrodes for Microbial Fuel Cell: A Waste to Wealth Strategy. Chem. Eng. J. 2023, 474, 145627. [Google Scholar] [CrossRef]
- Shrivastava, A.; Sharma, R.K. Lignocellulosic Biomass Based Microbial Fuel Cells: Performance and Applications. J. Clean. Prod. 2022, 361, 132269. [Google Scholar] [CrossRef]
- Canuto de Almeida e Silva, T.; Bhowmick, G.D.; Ghangrekar, M.M.; Wilhelm, M.; Rezwan, K. Sioc-Based Polymer Derived-Ceramic Porous Anodes for Microbial Fuel Cells. Biochem. Eng. J. 2019, 148, 29–36. [Google Scholar] [CrossRef]
- Sun, J.; Wang, R.; Li, H.; Zhang, L.; Liu, S. Boosting Bioelectricity Generation Using Three-Dimensional Nitrogen-Doped Macroporous Carbons as Freestanding Anode. Mater. Today Energy 2023, 33, 101273. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Wang, B.; Xuan, J.; Wong, J.W.C.; Lee, P.K.H.; Leung, M.K.H. Interfacial Electron Transfer and Bioelectrocatalysis of Carbonized Plant Material as Effective Anode of Microbial Fuel Cell. Electrochim. Acta 2015, 157, 314–323. [Google Scholar] [CrossRef]
- Rethinasabapathy, M.; Lee, J.H.; Roh, K.C.; Kang, S.-M.; Oh, S.Y.; Park, B.; Lee, G.-W.; Cha, Y.L.; Huh, Y.S. Silver Grass-Derived Activated Carbon with Coexisting Micro-, Meso- and Macropores as Excellent Bioanodes for Microbial Colonization and Power Generation in Sustainable Microbial Fuel Cells. Bioresour. Technol. 2020, 300, 122646. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, B.; Pandit, S.; Sharma, A.; Chauhan, S.; Mathuriya, A.S.; Dikshit, P.K.; Gupta, P.K.; Singh, R.C.; Sahni, M.; Pant, K.; et al. Modification of Graphite Sheet Anode with Iron (II, III) Oxide-Carbon Dots for Enhancing the Performance of Microbial Fuel Cell. Catalysts 2022, 12, 1040. [Google Scholar] [CrossRef]
- Taşkan, E.; Bulak, S.; Taşkan, B.; Şaşmaz, M.; El Abed, S.; El Abed, A. Nitinol as a Suitable Anode Material for Electricity Generation in Microbial Fuel Cells. Bioelectrochemistry 2019, 128, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, L.; Wang, R.; Sun, J.; Qiu, Y.; Liu, S. 3D Hierarchical Porous Carbon Foams as High-Performance Free-Standing Anodes for Microbial Fuel Cells. EcoMat 2022, 5, e12273. [Google Scholar] [CrossRef]
- Shahbazi Farahani, F.; D’Epifanio, A.; Majidi, M.R.; Placidi, E.; Arciprete, F.; Mecheri, B. Tailoring Morphology and Structure of Manganese Oxide Nanomaterials to Enhance Oxygen Reduction in Microbial Fuel Cells. Synth. Met. 2020, 268, 116487. [Google Scholar] [CrossRef]
- Wilberforce, T.; Abdelkareem, M.A.; Elsaid, K.; Olabi, A.G.; Sayed, E.T. Role of Carbon-Based Nanomaterials in Improving the Performance of Microbial Fuel Cells. Energy 2022, 240, 122478. [Google Scholar] [CrossRef]
- Yazdi, A.A.; D’Angelo, L.; Omer, N.; Windiasti, G.; Lu, X.; Xu, J. Carbon Nanotube Modification of Microbial Fuel Cell Electrodes. Biosens. Bioelectron. 2016, 85, 536–552. [Google Scholar] [CrossRef]
- Radeef, A.Y.; Ismail, Z.Z. Improvement of Bioenergy Generation Using Innovative Application of Food Waste Materials for Coating Carbon Nanotubes-Loaded Bioanode in 3d-Microbial Fuel Cells. Int. J. Hydrog. Energy 2023, 48, 18835–18844. [Google Scholar] [CrossRef]
- Santos, J.S.; Tarek, M.; Sikora, M.S.; Praserthdam, S.; Praserthdam, P. Anodized TiO2 Nanotubes Arrays as Microbial Fuel Cell (MFC) Electrodes for Wastewater Treatment: An Overview. J. Power Sources 2023, 564, 232872. [Google Scholar] [CrossRef]
- Iftimie, S.; Dumitru, A. Enhancing the Performance of Microbial Fuel Cells (MFCs) with Nitrophenyl Modified Carbon Nanotubes-Based Anodes. Appl. Surf. Sci. 2019, 492, 661–668. [Google Scholar] [CrossRef]
- Wu, X.; Qiao, Y.; Guo, C.; Shi, Z.; Li, C.M. Nitrogen Doping to Atomically Match Reaction Sites in Microbial Fuel Cells. Commun. Chem. 2020, 3, 68. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.S.; Liu, B.; Qiu, Y.F.; Liu, K.; Fang, Z.L.N.; Qi, J.T.; Ma, Z.; Sun, T.D.; Liu, S.Q. Enhanced Microorganism Attachment and Flavin Excretion in Microbial Fuel Cells Via an N,S-Codoped Carbon Microflower Anode. J. Colloid Interface Sci. 2023, 648, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Cheng, X.S.; Liu, K.; Dai, X.F.; Qi, J.T.; Ma, Z.; Qiu, Y.F.; Liu, S.Q. 3D Hierarchical Co8FeS8-FeCo2O4/N-CNTs@CF with an Enhanced Microorganisms-Anode Interface for Improving Microbial Fuel Cell Performance. ACS Appl. Mater. Interfaces 2022, 14, 35809–35821. [Google Scholar] [CrossRef]
- Cheng, S.; Logan, B.E. Ammonia Treatment of Carbon Cloth Anodes to Enhance Power Generation of Microbial Fuel Cells. Electrochem. Commun. 2007, 9, 492–496. [Google Scholar] [CrossRef]
- Caizán-Juanarena, L.; Borsje, C.; Sleutels, T.; Yntema, D.; Santoro, C.; Ieropoulos, I.; Soavi, F.; ter Heijne, A. Combination of Bioelectrochemical Systems and Electrochemical Capacitors: Principles, Analysis and Opportunities. Biotechnol. Adv. 2020, 39, 107456. [Google Scholar] [CrossRef]
- Yellappa, M.; Annie Modestra, J.; Rami Reddy, Y.V.; Venkata Mohan, S. Functionalized Conductive Activated Carbon-Polyaniline Composite Anode for Augmented Energy Recovery in Microbial Fuel Cells. Bioresour. Technol. 2021, 320, 124340. [Google Scholar] [CrossRef]
- He, Z.; Mansfeld, F. Exploring the Use of Electrochemical Impedance Spectroscopy (EIS) in Microbial Fuel Cell Studies. Energy Environ. Sci. 2009, 2, 215–219. [Google Scholar] [CrossRef]
- Hirsch, L.O.; Dubrovin, I.A.; Gandu, B.; Emanuel, E.; Kjellerup, B.V.; Ugur, G.E.; Schechter, A.; Cahan, R. Anode Amendment with Kaolin and Activated Carbon Increases Electricity Generation in a Microbial Fuel Cell. Bioelectrochemistry 2023, 153, 108486. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Fu, Q.; Zhang, L.; Wei, Z.; Liao, Q.; Zhu, X. Minimizing Mass Transfer Losses in Microbial Fuel Cells: Theories, Progresses and Prospectives. Renew. Sustain. Energy Rev. 2021, 136, 110460. [Google Scholar] [CrossRef]
- Hassanzadeh, R.; Sabzi, R.E.; Faraji, M. Polypyrrole/MoO3 Composite as an Appropriate Anode of Microbial Fuel Cell in Both Pulsed and Permanent Polarization with Excellent Performance. J. Power Sources 2024, 589, 233723. [Google Scholar] [CrossRef]
- Call, T.P.; Carey, T.; Bombelli, P.; Lea-Smith, D.J.; Hooper, P.; Howe, C.J.; Torrisi, F. Platinum-Free, Graphene Based Anodes and Air Cathodes for Single Chamber Microbial Fuel Cells. J. Mater. Chem. A 2017, 5, 23872–23886. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, L.; Wen, Q.; Chen, Y.; Qi, L.; Huang, J.; Tang, Z. A 3D Porous NCNT Sponge Anode Modified with Chitosan and Polyaniline for High-Performance Microbial Fuel Cell. Bioelectrochemistry 2019, 129, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Qiu, Z.; Zhang, Y.; Hu, F.; Zheng, J.; Lin, C. Using a Three-Dimensional Hydroxyapatite/Graphene Aerogel as a High-Performance Anode in Microbial Fuel Cells. J. Environ. Chem. Eng. 2021, 9, 105441. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Y.; Li, D.; Wu, J.; Tian, Y.; Liu, G.; Feng, Y. Revealed Mechanism of Micron-Pore Size of 3d Bio-Anode on the Behavior of Biofilm and System Performance in Microbial Electrochemical System. Chem. Eng. J. 2023, 464, 142736. [Google Scholar] [CrossRef]
- Yuan, H.; Dong, G.; Li, D.; Deng, L.; Cheng, P.; Chen, Y. Steamed Cake-Derived 3D Carbon Foam with Surface Anchored Carbon Nanoparticles as Freestanding Anodes for High-Performance Microbial Fuel Cells. Sci. Total Environ. 2018, 636, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, X.; Chen, Y.; Wen, Q.; Lin, C.; Zheng, J.; Li, W.; Xu, H.; Qi, L. A 3D Porous Nitrogen-Doped Carbon Nanotube Sponge Anode Modified with Polypyrrole and Carboxymethyl Cellulose for High-Performance Microbial Fuel Cells. J. Appl. Electrochem. 2020, 50, 1281–1290. [Google Scholar] [CrossRef]
- Meitl, L.A.; Eggleston, C.M.; Colberg, P.J.S.; Khare, N.; Reardon, C.L.; Shi, L. Electrochemical Interaction of Shewanella Oneidensis MR-1 and Its Outer Membrane Cytochromes OmcA and MtrC with Hematite Electrodes. Geochim. Cosmochim. Acta 2009, 73, 5292–5307. [Google Scholar] [CrossRef]
- Kolubah, P.D.; Mohamed, H.O.; Ayach, M.; Hari, A.R.; Alshareef, H.N.; Saikaly, P.; Chae, K.J.; Castaño, P. W2N-Mxene Composite Anode Catalyst for Efficient Microbial Fuel Cells Using Domestic Wastewater. Chem. Eng. J. 2023, 461, 141821. [Google Scholar] [CrossRef]
- Radouani, F.; Sanchez-Cid, C.; Silbande, A.; Laure, A.; Ruiz-Valencia, A.; Robert, F.; Vogel, T.M.; Salvin, P. Evolution and Interaction of Microbial Communities in Mangrove Microbial Fuel Cells and First Description of Shewanella Fodinae as Electroactive Bacterium. Bioelectrochemistry 2023, 153, 108460. [Google Scholar] [CrossRef]
- Amanze, C.; Zheng, X.; Anaman, R.; Wu, X.; Fosua, B.A.; Xiao, S.; Xia, M.; Ai, C.; Yu, R.; Wu, X.; et al. Effect of Nickel (II) on the Performance of Anodic Electroactive Biofilms in Bioelectrochemical Systems. Water Res. 2022, 222, 118889. [Google Scholar] [CrossRef] [PubMed]
- Uria, N.; Ferrera, I.; Mas, J. Electrochemical Performance and Microbial Community Profiles in Microbial Fuel Cells in Relation to Electron Transfer Mechanisms. BMC Microbiol. 2017, 17, 208. [Google Scholar] [CrossRef] [PubMed]
- Omenesa Idris, M.; Nasir Mohamad Ibrahim, M.; Asshifa Md Noh, N.; Ali Yaqoob, A.; Hazwan Hussin, M. Synthesis and Fabrication of Palm Kernel Shell-Derived Modified Electrodes: A Practical Step Towards the Industrialization of Microbial Fuel Cells. Chem. Eng. J. 2023, 475, 146321. [Google Scholar] [CrossRef]
- Huang, S.-J.; Dwivedi, K.A.; Kumar, S.; Wang, C.-T.; Yadav, A.K. Binder-Free NiO/MnO2 Coated Carbon Based Anodes for Simultaneous Norfloxacin Removal, Wastewater Treatment and Power Generation in Dual-Chamber Microbial Fuel Cell. Environ. Pollut. 2023, 317, 120578. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wang, C.; Ma, J. Capacitance-Enhanced 3D Graphene Anode for Microbial Fuel Cell with Long-Time Electricity Generation Stability. Electrochim. Acta 2018, 259, 1059–1067. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Ma, Z.; Li, X.; Qiu, Y.; Liu, D.; Liu, S. N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. Materials 2024, 17, 69. https://doi.org/10.3390/ma17010069
Liu K, Ma Z, Li X, Qiu Y, Liu D, Liu S. N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. Materials. 2024; 17(1):69. https://doi.org/10.3390/ma17010069
Chicago/Turabian StyleLiu, Ke, Zhuo Ma, Xinyi Li, Yunfeng Qiu, Danqing Liu, and Shaoqin Liu. 2024. "N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer" Materials 17, no. 1: 69. https://doi.org/10.3390/ma17010069
APA StyleLiu, K., Ma, Z., Li, X., Qiu, Y., Liu, D., & Liu, S. (2024). N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. Materials, 17(1), 69. https://doi.org/10.3390/ma17010069