Particleboards with Recycled Material from Hemp-Based Panels
Abstract
:1. Introduction
2. Material and Methods
2.1. Lignocellulosic Materials and Chemicals Used
2.2. Synthesis of Phenolic Type Resins
2.3. Synthesis of Urea–Formaldehyde Resins
2.4. Determination of Resin Properties
2.5. Production of Particleboards
2.6. Characterisation of Particleboards
3. Results–Discussion
3.1. General Properties of Resins
3.2. Fourier Transform Infrared Spectroscopy of the Resins and the Particleboards
3.3. Thermogravimetric Analysis of the Resins and the Particleboards
3.4. Mechanical Behavior of Particleboards
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bresnahan, S. Why Are Trees Important to the Ocean? WellKind Guatemala NGO. Available online: https://www.wellkind.org/blog/ym63d9rbtfq2syoc1gibpl3w4sh9qm (accessed on 10 November 2023).
- Union of Concerned Scientists, CO2 and Ocean Acidification: Causes, Impacts, Solutions. Available online: https://www.ucsusa.org/resources/co2-and-ocean-acidification (accessed on 10 November 2023).
- Neitzel, N.; Hosseinpourpia, R.; Walther, T.; Adamopoulos, S. Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials 2022, 15, 4542. [Google Scholar] [CrossRef] [PubMed]
- KPU T&L Worldpress: Are We Consuming Plywood? Available online: https://wordpress.kpu.ca/najikad93/hemp-can-save-trees/ (accessed on 10 November 2023).
- Tanasă, F.; Zănoagă, M.; Teacă, C.-A.; Nechifor, M.; Shahzad, A. Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—A review. I. Methods of modification. Polym. Compos. 2020, 41, 5–31. [Google Scholar] [CrossRef]
- Dolza, C.; Gonga, E.; Fages, E.; Tejada-Oliveros, R.; Balart, R.; Quiles-Carrillo, L. Green Composites from Partially Bio-Based Poly(butylene succinate-co-adipate)-PBSA and Short Hemp Fibers with Itaconic Acid-Derived Compatibilizers and Plasticizers. Polymers 2022, 14, 1968. [Google Scholar] [CrossRef] [PubMed]
- Burgada, F.; Fages, E.; Quiles-Carrillo, L.; Lascano, D.; Ivorra-Martinez, J.; Arrieta, M.P.; Fenollar, O. Upgrading Recycled Polypropylene from Textile Wastes in Wood Plastic Composites with Short Hemp Fiber. Polymers 2021, 13, 1248. [Google Scholar] [CrossRef] [PubMed]
- Chrysafi, I.; Ainali, N.M.; Xanthopoulou, E.; Zamboulis, A.; Bikiaris, D.N. Thermal Degradation Mechanism and Decomposition Kinetic Studies of Poly(Ethylene Succinate)/Hemp Fiber Composites. J. Compos. Sci. 2023, 7, 216. [Google Scholar] [CrossRef]
- Zamboulis, A.; Xanthopoulou, E.; Chrysafi, I.; Lorenzo, C.; Bikiaris, D.N. Poly(ethylene succinate)/hemp fiber composites: Fully biobased materials with improved thermal and biodegradation properties. Sustain. Chem. Environ. 2023, 4, 100045. [Google Scholar] [CrossRef]
- Auriga, R.; Pędzik, M.; Mrozowski, R.; Rogoziński, T. Hemp Shives as a Raw Material for the Production of Particleboards. Polymers 2022, 14, 5308. [Google Scholar] [CrossRef]
- Rimkienė, A.; Vėjelis, S.; Kremensas, A.; Vaitkus, S.; Kairytė, A. Development of High Strength Particleboards from Hemp Shives and Corn Starch. Materials 2023, 16, 5003. [Google Scholar] [CrossRef]
- Alao, P.; Tobias, M.; Kallakas, H.; Poltimäe, T.; Kers, J.; Goljandin, D. Development of hemp hurd particleboards from formaldehyde-free resins. Agron. Res. 2020, 18, 679–688. [Google Scholar] [CrossRef]
- Zvirgzds, K.; Kirilovs, E.; Kukle, S.; Gross, U. Production of Particleboard Using Various Particle Size Hemp Shives as Filler. Materials 2022, 15, 886. [Google Scholar] [CrossRef]
- Fehrmann, J.; Belleville, B.; Ozarska, B.; Gutowski, W.S.; Wilson, D. Influence of particle granulometry and panel composition on the physico-mechanical properties of ultra-low-density hemp hurd particleboard. Polym. Compos. 2023, 44, 7363–7383. [Google Scholar] [CrossRef]
- Nguyen, Q. How Sustainable Is Particleboard? Available online: https://impactful.ninja/how-sustainable-is-particle-board-ldf/ (accessed on 10 November 2023).
- Lykidis, C.; Grigoriou, A. Hydrothermal recycling of waste and performance of the recycled wooden particleboards. Waste Manag. 2008, 28, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Iždinský, J.; Vidholdová, Z.; Reinprecht, L. Particleboards from Recycled Wood. Forests 2020, 11, 1166. [Google Scholar] [CrossRef]
- Wronka, A.; Kowaluk, G. The Influence of Multiple Mechanical Recycling of Particleboards on Their Selected Mechanical and Physical Properties. Materials 2022, 15, 8487. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-H.; Lin, C.-J.; Wang, S.-Y.; Tsai, M.-J. Characteristics of particleboard made from recycled wood-waste chips impregnated with phenol formaldehyde resin. Build. Environ. 2007, 42, 189–195. [Google Scholar] [CrossRef]
- Hussein, Z.; Ashour, T.; Khalil, M.; Bahnasawy, A.; Ali, S.; Hollands, J.; Korjenic, A. Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties. Appl. Sci. 2019, 9, 3878. [Google Scholar] [CrossRef]
- Christjanson, P.; Pehk, T.; Paju, J. Structure and curing mechanism of resol phenol-formaldehyde prepolymer resins. Proc. Estonian Acad. Sci. 2010, 59, 225. [Google Scholar] [CrossRef]
- Pizzi, A.; Stephanou, A. On the chemistry, behavior, and cure acceleration of phenol–formaldehyde resins under very alkaline conditions. J. Appl. Polym. Sci. 1993, 49, 2157–2170. [Google Scholar] [CrossRef]
- Pizzi, A.; Ibeh, C.C. Phenol-formaldehyde resins. In Handbook of Thermoset Plastics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 13–40. [Google Scholar] [CrossRef]
- Pilato, L. (Ed.) Phenolic Resins: A Century of Progress; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Khan, M.A.; Ashraf, S.M. Studies on thermal characterization of lignin: Substituted phenol formaldehyde resin as wood adhesives. J. Therm. Anal. Calorim. 2007, 89, 993–1000. [Google Scholar] [CrossRef]
- Wang, M.; Leitch, M.; Xu, C.M. Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur. Polym. J. 2009, 45, 3380–3388. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Kountouras, S.; Nikolaidou, Z.; Chrissafis, K.; Michailof, C.; Kalogiannis, K.; Lappas, A.A. Urea-formaldehyde (UF) resins prepared by means of the aqueous phase of the catalytic pyrolysis of European beech wood. Holzforschung 2016, 70, 1139–1145. [Google Scholar] [CrossRef]
- Dunky, M.; Pizzi, A. Surfaces, Chemistry & Applications, in Adhesion Science and Engineering; Elsevier: Amsterdam, Switzerland, 2002. [Google Scholar]
- Ormondroyd, G.A. Adhesives for Wood Composites, in Wood Composites; Ansell, M., Ed.; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Beram, A.; Yasar, S. Performance of brutian pine (Pinus brutia ten.) fibers modified with low concentration NaOH solutions in fiberboard production. Fresenius Environ. Bull. 2020, 29, 70–78. [Google Scholar]
- Zorba, T.; Papadopoulou, E.; Hatjiissaak, A.; Paraskevopoulos, K.M.; Chrissafis, K. Urea-Formaldehyde resins characterised by thermal analysis and FTIR method. J. Therm. Anal. Calorim. 2008, 92, 29–33. [Google Scholar] [CrossRef]
- Papadopoulou, E.; de Wild, P.J.; Kountouras, S.; Chrissafis, K. Evaluation of torrefaction condensates as phenol substitutes in the synthesis of phenol formaldehyde adhesives suitable for plywood. Thermochim. Acta 2018, 663, 27–33. [Google Scholar] [CrossRef]
- Haupt, R.A.; Sellers, T., Jr. Characterizations of Phenol-Formaldehyde Resol Resins. Ind. Eng. Chem. Res. 1994, 33, 693. [Google Scholar] [CrossRef]
- So, S.; Rudin, A. Analysis of the Formation and Curing Reactions of Resole Phenolics. J. Appl. Polym. Sci. 1990, 41, 205. [Google Scholar] [CrossRef]
- Monni, J.; Alvila, L.; Pakkanen, T.T. Structural and Physical Changes in Phenol-Formaldehyde Resol Resin, as a Function of the Degree of Condensation of the Resol Solution. Ind. Eng. Chem. Res. 2007, 46, 6916–6924. [Google Scholar] [CrossRef]
- Dunky, A.M. Pizzi, Chapter 23—Wood Adhesives. In Adhesion Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2002; Volume 2, pp. 1039–1103. [Google Scholar] [CrossRef]
- Pizzi, C.C. Ibeh, Phenol–Formaldehydes. In Handbook of Thermoset Plastics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Fapeng, W.; Jifu, W.; Chunpeng, W.; Fuxiang, C.; Xiaohuan, L.; Jiuyin, P. Fabrication of soybean protein-acrylate composite mini-emulsion toward wood adhesive. Eur. J. Wood Prod. 2018, 76, 305–313. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.; Deng, C.; Xie, C.; Huang, M.; Zheng, F. Improving Stability and Accessibility of Quercetin in Olive Oil-in-Soy Protein Isolate/Pectin Stabilized O/W Emulsion. Foods 2020, 9, 123. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, S.; Liang, J.; Li, L.; Xi, X.; Deng, X.; Zhang, B.; Lei, H. Plasma Treatment Induced Chemical Changes of Alkali Lignin to Enhance the Performances of Lignin-Phenol-Formaldehyde Resin Adhesive. J. Renew. Mater. 2021, 9, 1959–1972. [Google Scholar] [CrossRef]
- Horikawa, Y.; Hirano, S.; Mihashi, A.; Kobayashi, Y.; Zhai, S.; Sugiyama, J. Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Appl. Biochem. Biotechnol. 2019, 188, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Nanda, P.K.; Nayak, P.L.; Rao, K.K. Thermal Degradation Analysis of Biodegradable Plastics from Urea-Modified Soy Protein Isolate. Polym. Plast. Technol. Eng. 2007, 46, 207–211. [Google Scholar] [CrossRef]
- Papadopoulou, K.E. Chrissafis, Thermal study of phenol–formaldehyde resin modified with cashew nut shell liquid. Thermochim. Acta 2011, 512, 105–109. [Google Scholar] [CrossRef]
- Jahan, T.; Lekhak, B.; Verma, A.K.; Dubey, A.; Bhattacharya, T.K. Preparation of phenol-formaldehyde resin modified with phenol-rich pine needle pyrolysis oil and assessment of bonding strength. Int. Wood Prod. J. 2022, 13, 148–155. [Google Scholar] [CrossRef]
- Ziner, R. Industrial Hemp Fiber Is Better Than Wood in Every Way. Available online: https://hemptoday.net/industrial-hemp-fiber-is-better-than-wood-in-every-way/ (accessed on 10 November 2023).
- Fourmentin, M.; Faure, P.; Pelupessy, P.; Sarou-Kanian, V.; Peter, U.; Lesueur, D.; Rodts, S.; Daviller, D.; Coussot, P. NMR and MRI observation of water absorption/uptake in hemp shives used 2 for hemp concrete. Constr. Build. Mater. 2016, 124, 405–413. [Google Scholar] [CrossRef]
- Smoca, A. Water Absorption Properties of Hemp Fibres Reinforced PLA bio-Composites, Engineering for Rural Development. In Proceedings of the 18th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019. [Google Scholar] [CrossRef]
- Mamza, P.A.; Ezeh, E.C.; Gimba, E.C.; Arthur, D.E. Comparative Study of Phenol Formaldehyde and Urea Formaldehyde Particleboards from Wood Waste for Sustainable Environment. Int. J. Sci. Technol. Res. 2014, 3, 53–61. Available online: https://www.researchgate.net/publication/351527898 (accessed on 10 November 2023).
Name of the Resin | Raw Materials | Ratio of Raw Materials in the Resin | Acronym of Resin |
---|---|---|---|
Phenol-Formaldehyde | Phenol | 26.0% | PF |
Formaldehyde | 45.5% | ||
NaOH | 14.8% | ||
Water | 13.6% | ||
Phenol-Formaldehyde-Soy flour | Phenol | 19.5% | PFS |
Soy flour | 6.5% | ||
Formaldehyde | 45.5% | ||
NaOH | 14.8% | ||
Water | 13.6% |
Name of the Resin | Raw Materials | Ratio of Materials in the Resin | Acronym of Resin |
---|---|---|---|
Urea-Formaldehyde | Formaldehyde | 40.3% | UF |
Urea-I | 13.8% | ||
Urea-II | 13.8% | ||
Water | 32.1% |
Virgin Biomass | Recycled Biomass | Ratio of Virgin/Recycled Biomass | Resin Used for the New Panels with Recycled Material | Abbreviation |
---|---|---|---|---|
Wood chips | - | 100/0 | PF, PFS, UF | wood-UF, wood-PF, wood-PFS25 |
Hemp shives | - | 100/0 | PF, PFS, UF | hemp-UF, hemp-PF, hemp-PFS25 |
Wood chips | Panels made from virgin wood chips/hemp shives at the ratios of: 0/100 and 100/0 bonded with PF and UF resins. | 70/30 | PFS | R(100H-PF)/wood R(100H-UF)/wood R(100W-PF)/wood R(100W-UF)/wood |
Wood chips | Panels made from virgin wood chips/hemp shives at the ratios of: 25/75, 50/50, 75/25, bonded with UF resin | 70/30 | PFS | R(25H/75W-UF)/wood R(50H/50W-UF)/wood R(75H/25W-UF)/wood |
Hemp shives | Panels made from virgin wood chips/hemp shives at the ratio of 25/75 bonded with PFS resin | 0/100, 75/25, 50/50 and 25/75 | PFS | R(25H/75W-PFS) R(25H/75W-PFS)/hemp 75/25 R(25H/75W-PFS)/hemp 50/50 R(25H/75W-PFS)/hemp 25/75 |
Properties | Ιnternal Βond (IB) N/mm2 | Bending Strength-(MOR) N/mm2 | Modulus of Elasticity (MOE) N/mm2 | Thickness Swelling (TS) % | |
---|---|---|---|---|---|
Test Method | EN319 | EN310 | EN310 | EN317 | |
Category of Panel | Performance Requirements | Use | |||
Ρ1 | 0.24 | 10 | - | - | General-purpose boards for use in dry conditions |
Ρ2 | 0.35 | 11 | 1600 | - | Boards for interior fitments (including furniture) for use in dry conditions |
Ρ3 | 0.45 | 14 | 1950 | 14 | Non-load-bearing boards for use in humid conditions |
Ρ4 | 0.35 | 15 | 2300 | 15 | Load-bearing boards for use in dry conditions |
Ρ5 | 0.45 | 16 | 2400 | 10 | Load-bearing boards for use in humid conditions |
Ρ6 | 0.50 | 18 | 3000 | 15 | Heavy-duty load-bearing boards for use in dry conditions |
Ρ7 | 0.70 | 20 | 3100 | 10 | Heavy-duty load-bearing boards for use in humid conditions |
Method for Formaldehyde Determination | Formaldehyde Content | Formaldehyde Class |
---|---|---|
Perforator method ΕΝ120/ΕΝ-ISO 12460-05:2015 | ≤8 mg/100 g oven dry board | Ε1 |
>8 mg/100 g to ≤30 mg/100 g oven dry board | Ε2 |
Resin | UF | PF | PFS |
---|---|---|---|
Solids, % | 65.31 | 39.87 | 44.50 |
pH at 25 °C, [ ] | 8.15 | 12.60 | 11.63 |
Viscosity, cP | 250 | 343 | 515 |
Specific Gravity, [ ] | 1.283 | 1.197 | 1.27 |
Water Tolerance, ml/ml | 1/3.5 | >1/9.0 | >1/9.0 |
Gel Time, m | - | 22 | 40 |
Gel Time, s | 57 | - | - |
Free Formaldehyde, % | 0.06 | 0.12 | 0.25 |
Alkali Content, % | - | 8.52 | 7.65 |
Buffer Capacity, mL | 11 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, E.; Chrysafi, I.; Karidi, K.; Mitani, A.; Bikiaris, D.N. Particleboards with Recycled Material from Hemp-Based Panels. Materials 2024, 17, 139. https://doi.org/10.3390/ma17010139
Papadopoulou E, Chrysafi I, Karidi K, Mitani A, Bikiaris DN. Particleboards with Recycled Material from Hemp-Based Panels. Materials. 2024; 17(1):139. https://doi.org/10.3390/ma17010139
Chicago/Turabian StylePapadopoulou, Electra, Iouliana Chrysafi, Konstantina Karidi, Andromachi Mitani, and Dimitrios N. Bikiaris. 2024. "Particleboards with Recycled Material from Hemp-Based Panels" Materials 17, no. 1: 139. https://doi.org/10.3390/ma17010139