Simulation of Work Hardening in Machining Inconel 718 with Multiscale Grain Size
Abstract
:1. Introduction
2. Overview of the Work
3. Simulation and Experimentation
3.1. FE Models of the Orthogonal Process
3.2. FE Models of Microstructure Changes
3.2.1. The Z–H Model
3.2.2. The DDB Model
3.2.3. Models Calibration
3.3. Experimentation
4. Results and Discussions
4.1. Two Different Models Predict Results
4.2. Analysis of Work-Hardening Behavior
5. Conclusions
- (1)
- For the small-grain-size Inconel 718, the fitting effect of the Z–H model (i.e., recrystallization-based model) is better than the DDB model. For the large-grain-size Inconel 718, the predicted results of the DDB model are in better agreement with the experimental results.
- (2)
- The SEM pictures of the experiment show that there are slip lines in the surface area, but no obvious grain refinement is found. This indicates that the recrystallization-based model of work hardening is not suitable for the workpiece with a large-grain-size Inconel 718.
- (3)
- The DWH and the surface hardness are significantly affected by the uncut chip thickness and chamfer angle, among which uncut chip thickness is the most significant factor. With the increase in both the uncut chip thickness and chamfer angle, the surface hardness and DWH increase.
- (4)
- For the depth of the hardening layer, the uncut chip thickness has a significant influence. The depth of the hardening layer will decrease with increasing uncut chip thickness. In general, the uncut chip thickness has the most significant influence on the hardening behavior, followed by the chamfer angle and chamfer length.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, X.; Liu, Z.; Wang, B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review. Measurement 2019, 132, 150–181. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z. Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: A review. Int. J. Adv. Manuf. Technol. 2018, 98, 1925–1975. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, Z.; Wang, B.; Song, Q.; Cai, Y. Recent progress of machinability and surface integrity for mechanical machining Inconel 718: A review. Int. J. Adv. Manuf. Technol. 2020, 109, 215–245. [Google Scholar] [CrossRef]
- Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011, 51, 250–280. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, Z. Effects of cutting parameters and tool nose radius on surface roughness and work hardening during dry turning Inconel 718. Int. J. Adv. Manuf. Technol. 2018, 96, 2421–2430. [Google Scholar] [CrossRef]
- Umbrello, D. Investigation of surface integrity in dry machining of Inconel 718. Int. J. Adv. Manuf. Technol. 2013, 69, 2183–2190. [Google Scholar] [CrossRef]
- Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L. Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718. Int. J. Adv. Manuf. Technol. 2011, 59, 483–489. [Google Scholar] [CrossRef]
- Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int. J. Mach. Tools Manuf. 2008, 48, 15–28. [Google Scholar] [CrossRef]
- Jafarian, F.; Umbrello, D.; Jabbaripour, B. Identification of new material model for machining simulation of Inconel 718 alloy and the effect of tool edge geometry on microstructure changes. Simul. Model. Pract. Theory 2016, 66, 273–284. [Google Scholar] [CrossRef]
- Jafarian, F.; Masoudi, S.; Umbrello, D.; Filice, L. New strategies for improvement of numerical model accuracy in machining of nickel-based alloy. Simul. Model. Pract. Theory 2019, 94, 134–148. [Google Scholar] [CrossRef]
- Caruso, S.; Rotella, G.; Del Prete, A.; Umbrello, D. Finite element modeling of microstructural changes in hard machining of SAE 8620. Appl. Sci. 2019, 10, 121. [Google Scholar] [CrossRef]
- Arısoy, Y.M.; Guo, C.; Kaftanoğlu, B.; Özel, T. Investigations on microstructural changes in machining of Inconel 100 alloy using face turning experiments and 3D finite element simulations. Int. J. Mech. Sci. 2016, 107, 80–92. [Google Scholar] [CrossRef]
- Arısoy, Y.M.; Özel, T. Prediction of machining induced microstructure in Ti–6Al–4V alloy using 3-D FE-based simulations: Effects of tool micro-geometry, coating and cutting conditions. J. Mater. Process. Technol. 2015, 220, 1–26. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Outeiro, J.; Xu, B.; Zhao, W. Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. J. Mater. Process. Technol. 2020, 286, 116834. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, X.; Liu, C.R. Finite element modeling on dislocation density and grain size evolution in machined surface. In Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference, MSEC2013-1130, Madison, WI, USA, 10–14 June 2013; p. 10. [Google Scholar]
- Li, B.; Zhang, S.; Hu, R.; Zhang, X. Dislocation density and grain size evolution in hard machining of H13 steel: Numerical and experimental investigation. J. Mater. 2020, 9, 4241–4254. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Xu, X.; Qi, Y.; Liu, Z.; Zhao, W. Effects of dislocation density evolution on mechanical behavior of OFHC Copper during high-speed machining. Materials 2019, 12, 2348. [Google Scholar] [CrossRef]
- Komatsu, T.; Matsumura, T.; Torizuka, S. Effect of grain size in stainless steel on cutting performance in micro-scale cutting. Int. J. Automot. 2011, 5, 334–341. [Google Scholar] [CrossRef]
- Komatsu, T.; Yoshino, T.; Matsumura, T.; Torizuka, S. Effect of crystal grain size in stainless steel on cutting process in micromilling. Procedia CIRP 2012, 1, 150–155. [Google Scholar] [CrossRef]
- Olovsjö, S.; Wretland, A.; Sjöberg, G. The effect of grain size and hardness of wrought Alloy 718 on the wear of cemented carbide tools. Wear 2010, 268, 1045–1052. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Bai, Q.; Kang, R.; Tang, J. Effect of grain size on subsurface characterization of pure iron subjected to orthogonal cutting. Int. J. Adv. Manuf. Technol. 2022, 120, 5793–5806. [Google Scholar] [CrossRef]
- Wu, X.; Li, L.; He, N.; Zhao, M.; Zhan, Z. Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper. Int. J. Adv. Manuf. Technol. 2015, 79, 321–327. [Google Scholar] [CrossRef]
- Polvorosa, R.; Suárez, A.; de Lacalle, L.L.; Cerrillo, I.; Wretland, A.; Veiga, F. Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. J. Manuf. Process. 2017, 26, 44–56. [Google Scholar] [CrossRef]
- Weng, J.; Saelzer, J.; Berger, S.; Zhuang, K.; Bagherzadeh, A.; Budak, E.; Biermann, D. Analytical and experimental investigations of rake face temperature considering temperature-dependent thermal properties. J. Mater. Process. Technol. 2023, 314, 117905. [Google Scholar] [CrossRef]
- Jafarian, F.; Imaz Ciaran, M.; Umbrello, D.; Arrazola, P.J.; Filice, L.; Amirabadi, H. Finite element simulation of machining Inconel 718 alloy including microstructure changes. Int. J. Mech. Sci. 2014, 88, 110–121. [Google Scholar] [CrossRef]
- Arrazola, P.J.; Özel, T.; Umbrello, D.; Davies, M.; Jawahir, I.S. Recent advances in modelling of metal machining processes. CIRP Ann. Manuf. Technol. 2013, 62, 695–718. [Google Scholar] [CrossRef]
- De Mange, J.J.; Prakash, V.; Pereira, J.M. Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy. Int. J. Impact Eng. 2009, 36, 1027–1043. [Google Scholar] [CrossRef]
- Yanagimoto, J.; Karhausen, K.; Brand, A.J.; Kopp, R. Incremental formulation for the prediction of flow stress and microstructural change in hot forming. J. Manuf. Sci. Eng. 1998, 120, 316–322. [Google Scholar] [CrossRef]
- Hughes, G.D.; Smith, S.D.; Pande, C.S.; Johnson, H.R.; Armstrong, R.W. Hall–Petch strenghening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Mater. 1986, 20, 93–97. [Google Scholar]
- Sui, F.-L.; Zuo, Y.; Liu, X.-H.; Chen, L.-Q. Microstructure analysis on IN 718 alloy round rod by FEM in the hot continuous rolling process. Appl. Math. Model. 2013, 37, 8776–8784. [Google Scholar] [CrossRef]
- Estrin, Y.; Toth, L.S.; Molinari, A.; Bréchet, Y. A dislocation-based model for all hardening stages in large strain deformation. Acta Mater. 1998, 46, 5509–5522. [Google Scholar] [CrossRef]
- Ding, H.; Shin, Y.C. Dislocation density-based grain refinement modeling of orthogonal cutting of commercially pure titanium. In Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference, MSEC2011-50220, Corvallis, OR, USA, 13–17 June 2011; p. 10. [Google Scholar]
- Ding, H.; Shin, Y.C. Dislocation density-based grain refinement modeling of orthogonal cutting of Titanium. J. Manuf. Sci. Eng. 2014, 136, 041003. [Google Scholar] [CrossRef]
- Ding, H.; Shin, Y.C. Multi-physics modeling and simulations of surface microstructure alteration in hard turning. J. Mater. Process. Technol. 2013, 213, 877–886. [Google Scholar] [CrossRef]
- Hu, D.; Gao, Y.; Meng, F.; Song, J.; Wang, R. Experimental and numerical analysis of microstructures and stress states of shot-peened GH4169 superalloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2018, 49, 1397–1409. [Google Scholar] [CrossRef]
- Liu, C.R.; Barash, M.M. The mechanical state of the sublayer of a surface generated by chip-removaI process. J. Ind. Eng. Int. 1976, 1, 1192–1201. [Google Scholar] [CrossRef]
Parameter | A (MPa) | B (MPa) | C | n | m |
---|---|---|---|---|---|
Value | 1290 | 895 | 0.016 | 0.526 | 1.55 |
Parameter | α* | β* | B | b (mm) | ||
Value | 0.08 | 0.04 | 14,900 | 107 | 0.25 | 0.06 |
Parameter | K | M | (mm−2) | (mm−2) | ||
Value | 119 or 769 | 3.06 | 1.0 × 105 | 3.2 | 2.5 × 107 | 5.0 × 107 |
Test | Cutting Speed: vc (m/min) | Uncut Chip Thickness: h (mm) | Chamfer Angle: θ (°) | Chamfer Length: L (μm) |
---|---|---|---|---|
1 | 50 | 0.04 | 25 | 100 |
2 | 50 | 0.04 | 25 | 150 |
3 | 50 | 0.04 | 25 | 200 |
4 | 50 | 0.04 | 15 | 100 |
5 | 50 | 0.04 | 15 | 150 |
6 | 50 | 0.04 | 15 | 200 |
7 | 50 | 0.08 | 15 | 100 |
8 | 50 | 0.08 | 15 | 150 |
9 | 50 | 0.08 | 15 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, K.; Wang, Z.; Zou, L.; Fu, C.; Weng, J. Simulation of Work Hardening in Machining Inconel 718 with Multiscale Grain Size. Materials 2023, 16, 3562. https://doi.org/10.3390/ma16093562
Zhuang K, Wang Z, Zou L, Fu C, Weng J. Simulation of Work Hardening in Machining Inconel 718 with Multiscale Grain Size. Materials. 2023; 16(9):3562. https://doi.org/10.3390/ma16093562
Chicago/Turabian StyleZhuang, Kejia, Zhuo Wang, Linli Zou, Changni Fu, and Jian Weng. 2023. "Simulation of Work Hardening in Machining Inconel 718 with Multiscale Grain Size" Materials 16, no. 9: 3562. https://doi.org/10.3390/ma16093562