Inflammatory, Oxidative Stress and Small Cellular Particle Response in HUVEC Induced by Debris from Endoprosthesis Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Preparation of Particles
2.3. Measurement of Zeta Potential
2.4. Dynamic Light Scattering (DLS)
2.5. Characterization of Abrasives
2.6. Treatment of Cells with Ceramic Particles
2.7. Measurements of Inflammation Processes by IL-6, IL-1β, and TNF-α
2.8. Cholinesterase Activity Assay
2.9. Glutathione S-Transferase Activity Assay
2.10. Detection of Reactive Oxygen Species (ROS), Lipid Droplets (LD) and Apoptosis via Flow Cytometry
2.11. Scanning Electron Microscopy (SEM)
2.12. Statistical Analysis
3. Results
3.1. Characterization of Particles
3.2. Morphological Changes of the Treated Cells
3.3. Inflammatory Response of HUVEC Cells
3.4. Oxidative Stress Response of HUVEC Cells
3.5. Cytotoxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibon, E.; Amanatullah, D.F.; Loi, F.; Pajarinen, J.; Nabeshima, A.; Yao, Z.; Hamadouche, M.; Goodman, S.B. The biological response to orthopaedic implants for joint replacement: Part I: Metals. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 2162–2173. [Google Scholar] [CrossRef]
- Evans, E.J.; Thomas, I.T. The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. Biomaterials 1986, 7, 25–29. [Google Scholar] [CrossRef]
- Mack, M. Inflammation and fibrosis. Matrix Biol. 2018, 68–69, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Mirra, J.M.; Marder, R.A.; Amstutz, H.C. The pathology of failed total joint arthroplasty. Clin. Orthop. Relat. Res. 1982, 170, 175–183. [Google Scholar] [CrossRef]
- Kienzle, A.; Walter, S.; von Roth, P.; Fuchs, M.; Winkler, T.; Müller, M. High Rates of Aseptic Loosening after Revision Total Knee Arthroplasty for Periprosthetic Joint Infection. JBJS OA 2020, 5, e20.00026. [Google Scholar] [CrossRef] [PubMed]
- Badarudeen, S.; Shu, A.C.; Ong, K.L.; Baykal, D.; Lau, E.; Malkani, A.L. Complications after Revision Total Hip Arthroplasty in the Medicare Population. J. Arthroplast. 2017, 32, 1954–1958. [Google Scholar] [CrossRef] [PubMed]
- Hannouche, D.; Hamadouche, M.; Nizard, R.; Bizot, P.; Meunier, A.; Sedel, L. Ceramics in total hip replacement. Clin. Orthop. Relat. Res. 2005, 430, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Ha, Y.C.; Yoo, J.I.; Jo, W.L.; Kim, K.C.; Koo, K.H. Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty. Bone Jt. J. 2017, 99-B, 741–748. [Google Scholar] [CrossRef]
- Bizot, P.; Nizard, R.; Hamadouche, M.; Sedel, L. Prevention of wear and osteolysis: Alumina-on-alumina bearing. Clin. Orthop. Relat. Res. 2001, 393, 85–93. [Google Scholar] [CrossRef]
- Dorlot, J.M.; Christel, P.; Meunier, A. Wear analysis of retrieved alumina heads and sockets of hip prostheses. J. Biomed. Mater. Res. 1989, 23, 299–310. [Google Scholar] [CrossRef]
- Mouthuy, P.A.; Snelling, S.J.B.; Dakin, S.G.; Milković, L.; Gašparović, A.Č.; Carr, A.J.; Žarković, N. Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials 2016, 109, 55–68. [Google Scholar] [CrossRef]
- Hallab, N.J.; Jacobs, J.J. Biologic effects of implant debris. Bull. NYU Hosp. Jt. Dis. 2009, 67, 182–188. [Google Scholar] [PubMed]
- Couto, M.; Vasconcelos, D.P.; Sousa, D.M.; Sousa, B.; Conceição, F.; Neto, E.; Lamghari, M.; Alves, C.J. The Mechanisms Underlying the Biological Response to Wear Debris in Periprosthetic Inflammation. Front. Mater. 2020, 7, 274. [Google Scholar] [CrossRef]
- Athanasou, N.A. The pathobiology and pathology of aseptic implant failure. Bone Jt. Res. 2016, 5, 162–168. [Google Scholar] [CrossRef]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Kranz, I.; Gonzalez, J.B.; Gemeinert, M.; Griepentrog, M.; Klaffke, D.; Knabe, C.; Osterle, W.; Gross, U. Biological response to micron- and nanometer-sized particles known as potential wear products from artificial hip joints: Part II: Reaction of murine macrophages to corundum particles of different size distributions. J. Biomed. Mater. Res. Part A 2009, 89, 390–401. [Google Scholar] [CrossRef]
- Staniewicz-Brudnik, B.; Karolus, M.; Cholewa-Kowalska, K.; Skrabalak, G.; Laszkiewicz-Łukasik, J.; Drukała, J.; Stalińska, J.; Dziedzic, K. Selected Physico-Chemical Properties of Composite Scaffolds of Sintered Submicrocrystalline Corundum and Bioglass. Int. J. Adv. Manuf. Technol. 2022, 120, 1867–1876. [Google Scholar] [CrossRef]
- Li, H.F.; Wang, Y.B.; Zheng, Y.F.; Lin, J.P. Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1721–1728. [Google Scholar] [CrossRef]
- Gjurin, S.Ž.; Jenko, M.; Donik, Č.; Oblak, Č. Characterization of New and Retrieved Titanium Biomaterial for Dental Implants. Mater. Technol. 2021, 55, 33–37. [Google Scholar]
- Avsec, K.; Conradi, M.; Jenko, M.; Kocjančič, B.; Debeljak, M.; Gorenšek, M.; Dolinar, D. Effect of sterilization on the surface properties of Ti6Al7Nb alloy femoral stems. Mater. Technol. 2021, 55, 59–64. [Google Scholar] [CrossRef]
- Dolinar, D.; Gorenšek, M.; Jenko, M.; Godec, M.; Batic, B.Š.; Donik, Č.; Kocijan, A.; Debeljak, M.; Kocjančič, B. Biomaterials in endoprosthetics. Mater. Technol. 2018, 52, 89–98. [Google Scholar] [CrossRef]
- Avsec, K.; Jenko, M.; Conradi, M.; Kocijan, A.; Vesel, A.; Kovač, J.; Godec, M.; Belič, I.; Batič, B.Š.; Donik, Č.; et al. Surface Properties of Retrieved Cementless Femoral Hip Endoprostheses Produced from a Ti6Al7Nb Alloy. Coatings 2019, 9, 868. [Google Scholar] [CrossRef]
- Cör, A. Histological Picture of the Wear Particles and the Biological Response in Periprosthetic Tissue. Mater. Technol. 2019, 53, 77–80. [Google Scholar] [CrossRef]
- Jan, Z.; Kononenko, V.; Hočevar, M.; Drobne, D.; Dolinar, D.; Kocjančič, B.; Jenko, M.; Kralj-Iglič, V. Scanning Electron Microscope Images of HUVEC Cells Treated with Materials Used for Processing of Orthopaedic and Dental Implants. Socrat. Lect. 2022, 7, 97–101. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Sitar, S.; Aseyev, V.; Kogej, K. Differences in association behavior of isotactic and atactic poly(methacrylic acid). Polymer 2014, 55, 848–854. [Google Scholar] [CrossRef]
- Kaduk, J.A.; Billinge, S.J.L.; Dinnebier, R.E.; Henderson, N.; Madsen, I.; Černý, R.; Leoni, M.; Lutterotti, L.; Thakral, S.; Chateigner, D. Powder diffraction. Nat. Rev. Methods Prim. 2021, 1, 77. [Google Scholar] [CrossRef]
- Goršak, T.; Drab, M.; Križaj, D.; Jeran, M.; Genova, J.; Kralj, S.; Lisjak, D.; Kralj-Iglič, V.; Iglič, A.; Makovec, D. Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruption of phospholipid membranes. J. Colloid Interface Sci. 2020, 579, 508–519. [Google Scholar] [CrossRef]
- Kumar, M.R.; Ajesh, K.Z.; Sabu, T. Energy-Dispersive X-ray Spectroscopy Techniques for Nanomaterial. In Micro and Nano Technologies, Microscopy Methods in Nanomaterials Characterization; Sabu, T., Raju, T., Ajesh, K.Z., Kumar, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 383–405. [Google Scholar] [CrossRef]
- Jan, Z.; Drab, M.; Drobne, D.; Zavec, A.B.; Benčina, M.; Drašler, B.; Hočevar, M.; Krek, J.L.; Pađen, L.; Pajnič, M.; et al. Decrease in Cellular Nanovesicles Concentration in Blood of Athletes More Than 15 Hours After Marathon. Int. J. Nanomed. 2021, 16, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Mannervik, B. The isoenzymes of glutathione transferase. Adv. Enzymol. Relat. Areas Mol. Biol. 1985, 57, 357–417. [Google Scholar] [CrossRef] [PubMed]
- Repar, N.; Jovičić, E.J.; Kump, A.; Birarda, G.; Vaccari, L.; Erman, A.; Kralj, S.; Nemec, S.; Petan, T.; Drobne, D. Oleic Acid Protects Endothelial Cells from Silica-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs)-Induced Oxidative Stress and Cell Death. Int. J. Mol. Sci. 2022, 23, 6972. [Google Scholar] [CrossRef] [PubMed]
- Škufca, D.; Božič, D.; Hočevar, M.; Jeran, M.; Zavec, A.B.; Kisovec, M.; Podobnik, M.; Matos, T.; Tomazin, R.; Iglič, A.; et al. Interaction between Microalgae P. tricornutum and Bacteria Thalassospira sp. for Removal of Bisphenols from Conditioned Media. Int. J. Mol. Sci. 2022, 23, 8447. [Google Scholar] [CrossRef] [PubMed]
- Landgraeber, S.; Jager, M.; Jacobs, J.J.; Hallab, N.J. The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines. Mediat. Inflamm. 2014, 2014, 185150. [Google Scholar] [CrossRef]
- Baranov, M.V.; Kumar, M.; Sacanna, S.; Thutupalli, S.; Van den Bogaart, G. Modulation of Immune Responses by Particle Size and Shape. Front. Immunol. 2020, 11, 3854. [Google Scholar] [CrossRef] [PubMed]
- Fošnarič, M.; Iglič, A.; Kroll, D.M.; May, S. Monte Carlo simulations of complex formation between a mixed fluid vesicle and a charged colloid. J. Chem. Phys. 2009, 131, 105103. [Google Scholar] [CrossRef]
- Abdulhameed, E.A.; Al-Rawi, N.H.; Omar, M.; Khalifa, N.; Samsudin, A.B.R. Titanium dioxide dental implants surfaces related oxidative stress in bone remodeling: A systematic review. PeerJ 2022, 10, e12951. [Google Scholar] [CrossRef]
- Jamieson, S.; Mawdesley, A.; Deehan, D.; Kirby, J.; Holland, J.; Tyson-Capper, A. Inflammatory responses to metal oxide ceramic nanopowders. Sci. Rep. 2021, 11, 10531. [Google Scholar] [CrossRef]
- Bertrand, J.; Delfosse, D.; Mai, V.; Awiszus, F.; Harnisch, K.; Lohmann, C.H. Ceramic prosthesis surfaces induce an inflammatory cell response and fibrotic tissue changes. Bone Jt. J. 2018, 100-B, 882–890. [Google Scholar] [CrossRef]
- Bylski, D.; Wedemeyer, C.; Xu, J.; Sterner, T.; Löer, F.; von Knoch, M. Alumina ceramic particles, in comparison with titanium particles, hardly affect the expression of RANK-, TNF-alpha-, and OPG-mRNA in the THP-1 human monocytic cell line. J. Biomed. Mater. Res. Part A 2009, 89, 707–716. [Google Scholar] [CrossRef]
- Yamamoto, A.; Honma, R.; Sumita, M.; Hanawa, T. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J. Biomed. Mater. Res. Part A 2004, 68, 244–256. [Google Scholar] [CrossRef]
- Raeeszadeh, M.; Moradi, M.; Ayar, P.; Akbari, A. The Antioxidant Effect of Medicago sativa L. (Alfalfa) Ethanolic Extract against Mercury Chloride (HgCl2) Toxicity in Rat Liver and Kidney: An in Vitro and in Vivo Study. Evid.-Based Complement. Altern. Med. 2021, 2021, 8388002. [Google Scholar] [CrossRef]
- Raeeszadeh, M.; Beheshtipour, J.; Jamali, R.; Akbar, A. The Antioxidant Properties of Alfalfa (Medicago sativa L.) and Its Biochemical, Antioxidant, Anti-Inflammatory, and Pathological Effects on Nicotine-Induced Oxidative Stress in the Rat Liver. Oxidative Med. Cell. Longev. 2022, 2022, 2691577. [Google Scholar] [CrossRef]
- Radziun, E.; Wilczyńska, J.D.; Książek, I.; Nowak, K.; Anuszewska, E.L.; Kunicki, A.; Olszyna, A.; Ząbkowski, T. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol. Vitr. 2011, 25, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Catelas, I.; Petit, A.; Zukor, D.J.; Marchand, R.; Yahia, L.; Huk, O.L. Induction of macrophage apoptosis by ceramic and polyethylene particles in vitro. Biomaterials 1999, 20, 625–630. [Google Scholar] [CrossRef]
- Olivier, V.; Duval, J.L.; Hindié, M.; Pouletaut, P.; Nagel, M.D. Comparative particle-induced cytotoxicity toward macrophages and fibroblasts. Cell Biol. Toxicol. 2003, 19, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Shi, B. Zirconia Nanoparticles-Induced Toxic Effects in Osteoblast-Like 3T3-E1 Cells. Nanoscale Res. Lett. 2018, 13, 353. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhang, L.; Xu, E.; Yuan, H.; Zhao, F.; Gao, J. SiAlON–Al2O3 Ceramics as Potential Biomaterials. Ceram. Int. 2019, 45, 16809–16813. [Google Scholar] [CrossRef]
- Wallis, R.; Mizen, H.; Bishop, C.L. The Bright and Dark Side of Extracellular Vesicles in the Senescence-Associated Secretory Phenotype. Mech. Ageing Dev. 2020, 189, 111263. [Google Scholar] [CrossRef]
- Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Karamanos, Y. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells 2020, 9, 851. [Google Scholar] [CrossRef]
- Akbar, N.; Digby, J.E.; Cahill, T.J.; Tavare, A.N.; Corbin, A.L.; Saluja, S.; Dawkins, S.; Edgar, L.; Rawlings, N.; Ziberna, K.; et al. Endothelium-Derived Extracellular Vesicles Promote Splenic Monocyte Mobilization in Myocardial Infarction. JCI Insight 2017, 2, e93344. [Google Scholar] [CrossRef] [PubMed]
- Saludas, L.; Garbayo, E.; Ruiz-Villalba, A.; Hernández, S.; Vader, P.; Prósper, F.; Blanco-Prieto, M.J. Isolation Methods of Large and Small Extracellular Vesicles Derived from Cardiovascular Progenitors: A Comparative Study. Eur. J. Pharm. Biopharm. 2022, 170, 187–196. [Google Scholar] [CrossRef]
- Momen-Heravi, F.; Balaj, L.; Alian, S.; Mantel, P.Y.; Halleck, A.E.; Trachtenberg, A.J.; Soria, C.E.; Oquin, S.; Bonebreak, C.M.; Saracoglu, E.; et al. Current Methods for the Isolation of Extracellular Vesicles. Biol. Chem. 2013, 394, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Šuštar, V.; Bedina-Zavec, A.; Štukelj, R.; Frank, M.; Bobojevič, G.; Janša, R.; Ogorevc, E.; Kruljc, P.; Mam, K.; Simunič, B.; et al. Nanoparticles Isolated from Blood: A Reflection of Vesiculability of Blood Cells during the Isolation Process. Int. J. Nanomed. 2011, 6, 2737–2748. [Google Scholar] [CrossRef]
- Kralj-Iglič, V.; Pocsfalvi, G.; Mesarec, L.; Šuštar, V.; Hägerstrand, H.; Iglič, A. Minimizing Isotropic and Deviatoric Membrane Energy—An Unifying Formation Mechanism of Different Cellular Membrane Nanovesicle Types. PLoS ONE 2020, 15, e0244796. [Google Scholar] [CrossRef] [PubMed]
- Szatanek, R.; Baran, J.; Siedlar, M.; Baj-Krzyworzeka, M. Isolation of Extracellular Vesicles: Determining the Correct Approach (Review). Int. J. Mol. Med. 2015, 36, 11–17. [Google Scholar] [CrossRef]
- Mantile, F.; Kisovec, M.; Adamo, G.; Romancino, D.P.; Hočevar, M.; Božič, D.; Zavec, A.B.; Podobnik, M.; Stoppelli, M.P.; Kisslinger, A.; et al. A Novel Localization in Human Large Extracellular Vesicles for the EGF-CFC Founder Member CRIPTO and Its Biological and Therapeutic Implications. Cancers 2022, 14, 3700. [Google Scholar] [CrossRef]
- Romolo, A.; Jan, Z.; Zavec, A.B.; Kisovec, M.; Arrigler, V.; Spasovski, V.; Podobnik, M.; Iglič, A.; Pocsfalvi, G.; Kogej, K.; et al. Assessment of Small Cellular Particles from Four Different Natural Sources and Liposomes by Interferometric Light Microscopy. Int. J. Mol. Sci. 2022, 23, 15801. [Google Scholar] [CrossRef]
Sample | u. Al2O3 | Al2O3 | ZrO2/SiO2 | |||
---|---|---|---|---|---|---|
Conditioned (C)/Fresh(F) medium | C | F | C | F | C | F |
pH | 7.87 | 7.87 | 7.87 | 8.19 | 7.87 | 7.87 |
Zeta potential [mV] | −10.3 | −10.4 | −10.4 | −12.1 | −10.7 | −10.7 |
Dh [nm] (1st peak) | 1085 | 2055 | 2055 | 1538 | 1316 | 1316 |
Dh [nm] (2nd peak) | 6 | 14 | 14 | 6 | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, Z.; Hočevar, M.; Kononenko, V.; Michelini, S.; Repar, N.; Caf, M.; Kocjančič, B.; Dolinar, D.; Kralj, S.; Makovec, D.; et al. Inflammatory, Oxidative Stress and Small Cellular Particle Response in HUVEC Induced by Debris from Endoprosthesis Processing. Materials 2023, 16, 3287. https://doi.org/10.3390/ma16093287
Jan Z, Hočevar M, Kononenko V, Michelini S, Repar N, Caf M, Kocjančič B, Dolinar D, Kralj S, Makovec D, et al. Inflammatory, Oxidative Stress and Small Cellular Particle Response in HUVEC Induced by Debris from Endoprosthesis Processing. Materials. 2023; 16(9):3287. https://doi.org/10.3390/ma16093287
Chicago/Turabian StyleJan, Zala, Matej Hočevar, Veno Kononenko, Sara Michelini, Neža Repar, Maja Caf, Boštjan Kocjančič, Drago Dolinar, Slavko Kralj, Darko Makovec, and et al. 2023. "Inflammatory, Oxidative Stress and Small Cellular Particle Response in HUVEC Induced by Debris from Endoprosthesis Processing" Materials 16, no. 9: 3287. https://doi.org/10.3390/ma16093287
APA StyleJan, Z., Hočevar, M., Kononenko, V., Michelini, S., Repar, N., Caf, M., Kocjančič, B., Dolinar, D., Kralj, S., Makovec, D., Iglič, A., Drobne, D., Jenko, M., & Kralj-Iglič, V. (2023). Inflammatory, Oxidative Stress and Small Cellular Particle Response in HUVEC Induced by Debris from Endoprosthesis Processing. Materials, 16(9), 3287. https://doi.org/10.3390/ma16093287