Effective and Efficient Porous CeO2 Adsorbent for Acid Orange 7 Adsorption
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Synthesis of Porous CeO2
2.3. Characterization
2.4. Adsorption of AO7 Dye
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chethana, M.; Sorokhaibam, L.G.; Bhandari, V.M.; Raja, S.; Ranade, V.V. Green Approach to Dye Wastewater Treatment Using Biocoagulants. ACS Sustain. Chem. Eng. 2016, 4, 2495–2507. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Shunmugam, R. Quaternary-Ammonium-Based Gels with Varied Alkyl Chains for the Efficient Removal of Toxic Acid Orange 7. ChemistrySelect 2020, 5, 7427–7438. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Jiang, R.; Fu, Y.Q.; Jiang, J.H.; Xiao, L.; Zeng, G.M. Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite. Appl. Surf. Sci. 2011, 258, 1337–1344. [Google Scholar] [CrossRef]
- Thakur, S.; Chauhan, M.S. Treatment of Dye Wastewater from Textile Industry by Electrocoagulation and Fenton Oxidation: A Review. In Water Quality Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 117–129. [Google Scholar] [CrossRef]
- Štefelová, J.; Slovák, V.; Siqueira, G.; Olsson, R.T.; Tingaut, P.; Zimmermann, T.; Sehaqui, H. Drying and Pyrolysis of Cellulose Nanofibers from Wood, Bacteria, and Algae for Char Application in Oil Absorption and Dye Adsorption. ACS Sustain. Chem. Eng. 2017, 5, 2679–2692. [Google Scholar] [CrossRef]
- Kandil, H.; Abdelhamid, A.E.; Moghazy, R.M.; Amin, A. Functionalized PVA film with good adsorption capacity for anionic dye. Polym. Eng. Sci. 2022, 62, 145–159. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Zhao, C.; Ye, Y.; Chen, X.; Da, X.; Qiu, M.; Fan, Y. Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater. Chin. J. Chem. Eng. 2022, 41, 267–277. [Google Scholar] [CrossRef]
- Umar, A.; Kumar, R.; Chauhan, M.S.; Kumar, R.; Ibrahim, A.A.; Alhamami, M.A.M.; Algadi, H.; Akhtar, M.S. Effective Fluorescence Detection of Hydrazine and the Photocatalytic Degradation of Rhodamine B Dye Using CdO-ZnO Nanocomposites. Coatings 2022, 12, 1959. [Google Scholar] [CrossRef]
- Halim, N.; Adnan, R.; Lahuri, A.H.; Jaafar, N.F.; Nordin, N. Exploring the potential of highly efficient graphite/chitosan-PVC composite electrodes in the electrochemical degradation of reactive red 4. J. Chem. Technol. Biotechnol. 2022, 97, 147–159. [Google Scholar] [CrossRef]
- Hoang, N.T.; Nguyen, V.T.; Tuan, N.; Manh, T.D.; Le, P.C.; Tac, D.V.; Mwazighe, F.M. Degradation of dyes by uv/persulfate and comparison with other uv-based advanced oxidation processes: Kinetics and role of radicals. Chemosphere 2022, 298, 134197. [Google Scholar] [CrossRef]
- Singh, A.; Pal, D.B.; Mohammad, A.; Alhazmi, A.; Haque, S.; Yoon, T.; Srivastava, N.; Guptai, V.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 2022, 343, 126154. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A.; Bashir, M.A.; Najam, T.; Javad, M.S.; Suleman, S.; Hussain, S.; Kumar, O.P.; Shah, S.S.A.; Rehman, A.U. Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects. Microchem. J. 2021, 164, 105973. [Google Scholar] [CrossRef]
- Shahzad, K.; Nazir, M.A.; Jamshaid, M.; Kumar, O.P.; Najam, T.; Shah, S.S.A.; Rehman, A.U. Synthesis of nanoadsorbent entailed mesoporous organosilica for decontamination of methylene blue and methyl orange from water. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- Lin, R.; Liang, Z.; Yang, C.; Zhao, Z.; Cui, F. Selective adsorption of organic pigments on inorganically modified mesoporous biochar and its mechanism based on molecular structure. J. Colloid Interf. Sci. 2020, 573, 21–30. [Google Scholar] [CrossRef]
- Rathi, A.; Basu, S.; Barman, S. Efficient eradication of antibiotic and dye by C-dots@zeolite nanocomposites: Performance evaluation, and degraded products analysis. Chemosphere 2022, 298, 134260. [Google Scholar] [CrossRef]
- Al-Salihi, S.; Jasim, A.M.; Fidalgo, M.M.; Xing, Y. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells. Chemosphere 2022, 286, 131769. [Google Scholar] [CrossRef]
- Ullah, S.; Rahman, A.U.; Ullah, F.; Rashid, A.; Arshad, T.; Viglaová, E.; Galamboš, M.; Mahmoodi, N.M.; Ullah, H. Adsorption of malachite green dye onto mesoporous natural inorganic clays: Their equilibrium isotherm and kinetics studies. Water 2021, 13, 965. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, B.; Chen, H.; You, W.; Jiang, C.; Yu, J. Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of congo red in water. J. Colloid Interface Sci. 2017, 504, 688–696. [Google Scholar] [CrossRef]
- Ding, Z.; Yang, W.; Huo, K.; Shaw, L. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage. Prog. Chem. 2021, 33, 1586–1597. [Google Scholar] [CrossRef]
- Huo, X.; Zhang, Y.; Zhang, J.; Zhou, P.; Xie, R.; Wei, C.; Liu, Y.; Wang, N. Selective adsorption of anionic dyes from aqueous solution by nickel (II) oxide. J. Water Supply Res. Technol. 2019, 68, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Chergaoui, S.; Zheng, J.; Volodine, A.; Zhang, X.; Liu, Z.; Luis, P.; Van der Bruggen, B. Low-pressure highly permeable polyester loose nanofiltration membranes tailored by natural carbohydrates for effective dye/salt fractionation. J. Hazard. Mater. 2022, 421, 126716. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Lu, S.; Ma, Y.; Zhao, L. Synergistic photocatalysis-fenton reaction of flower-shaped CeO2/Fe3O4 magnetic catalyst for decolorization of high concentration congo red dye. Colloids Surf. A 2022, 647, 129021. [Google Scholar] [CrossRef]
- Chi, C.; Panpan, Q.U.; Ren, C.; Xin, X.U.; Bai, F.; Zhang, D. Preparation of SiO2@Ag@SiO2@TiO2 core-shell structure and its photocatalytic degradation property. J. Inorg. Mater. 2022, 37, 750–756. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Jabeenm, S.; Wattoo, M.A.; Bashir, M.S.; Shah, S.S.A.; Rehman, A.U. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008. [Google Scholar] [CrossRef]
- Tabrizi, S.H.; Tanhaei, B.; Ayati, A.; Ranjbari, S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. Environ. Res. 2022, 204, 111965. [Google Scholar] [CrossRef]
- Ranjbari, S.; Ayati, A.; Tanhaei, B.; Al-Othman, A.; Karimi, F. The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine. Environ. Res. 2021, 204, 111961. [Google Scholar] [CrossRef] [PubMed]
- Khoshkho, S.M.; Tanhaei, B.; Ayati, A.; Kazemi, M. Preparation and characterization of ionic and non-ionic surfactants impregnated κ-carrageenan hydrogel beads for investigation of the adsorptive mechanism of cationic dye to develop for biomedical applications. J. Mol. Liq. 2020, 324, 115118. [Google Scholar] [CrossRef]
- Cheng, C.; Li, X.; Le, Q.; Guo, R.; Lan, Q.; Cui, J. Effect of REs (Y, Nd) addition on high temperature oxidation kinetics, oxide layer characteristic and activation energy of AZ80 alloy. J. Magnes. Alloy. 2020, 8, 1281–1295. [Google Scholar] [CrossRef]
- Zengin, H.; Turen, Y. Effect of Y addition on microstructure and corrosion behavior of extruded Mg-Zn-Nd-Zr alloy. J. Magnes. Alloy. 2022, 8, 640–653. [Google Scholar] [CrossRef]
- Zhu, F.; Ji, Q.; Lei, Y.; Ma, J.; Xiao, Q.; Yang, Y.; Komarneni, S. Efficient degradation of orange II by core shell CoFe2O4-CeO2 nanocomposite with the synergistic effect from sodium persulfate. Chemosphere 2022, 291, 132765. [Google Scholar] [CrossRef]
- Fauzi, A.A.; Jalil, A.A.; Hassan, N.S.; Aziz, F.F.A.; Azami, M.S.; Hussain, I.; Saravanan, R.; Vo, D.V.N. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere 2022, 286, 131651. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, X.; Li, Y.; Schwank, J.W. A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today 2019, 327, 90–115. [Google Scholar] [CrossRef]
- Mahato, N.; Gupta, A.; Balani, K. Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: A review. Nanomater. Energy 2012, 1, 27–45. [Google Scholar] [CrossRef]
- Truffault, L.; Ta, M.T.; Devers, T.; Konstantinov, K.; Harel, V.; Simmonard, C.; Andreazza, C.; Nevirkovets, I.P.; Pineau, A.; Veron, O.; et al. Application of nanostructured Ca doped CeO2 for ultraviolet filtration. Mater. Res. Bull. 2010, 45, 527535. [Google Scholar] [CrossRef]
- Li, Q.; Song, L.; Liang, Z.; Sun, M.; Wu, T.; Huang, B.; Luo, F.; Du, Y.; Yan, C.H. A Review on CeO2-Based Electrocatalyst and Photocatalyst in Energy Conversion. Adv. Energy Sustain. Res. 2021, 2, 2000063. [Google Scholar] [CrossRef]
- Lohwasser, W.; Gerblinger, J.; Lampe, U.; Meixner, H. Effect of grain size of sputtered cerium-oxide films on their electrical and kinetic behavior at high temperatures. J. Appl. Phys. 1994, 75, 3991–3999. [Google Scholar] [CrossRef]
- Li, J.; Tappero, R.V.; Acerbo, A.S.; Yan, H.; Chu, Y.; Lowry, G.V.; Unrine, J.M. Effect of CeO2 nanomaterial surface functional groups on tissue and subcellular distribution of Ce in tomato (Solanum lycopersicum). Environ. Sci. Nano 2019, 6, 273–285. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.; Yu, H.; Aprea, P.; Hao, S. High-efficiency adsorption for acid dyes over CeO2·xH2O synthesized by a facile method. J. Alloy. Compd. 2019, 776, 96–104. [Google Scholar] [CrossRef]
- Zheng, N.C.; Wang, Z.; Long, J.Y.; Kong, L.J.; Chen, D.Y.; Liu, Z.Q. Shape-dependent adsorption of CeO2 nanostructures for superior organic dye removal. J. Colloid Interface Sci. 2018, 525, 225–233. [Google Scholar] [CrossRef]
- Thirunavukkarasu, A.; Nithya, R. Adsorption of acid orange 7 using green synthesized CaO/CeO2 composite: An insight into kinetics, equilibrium, thermodynamics, mass transfer and statistical models. J. Taiwan Inst. Chem. Eng. 2020, 111, 44–62. [Google Scholar] [CrossRef]
- Tomić, N.M.; Dohčević-Mitrović, Z.D.; Paunović, N.M.; Mijin, D.Ž.; Radić, N.D.; Grbić, B.V.; Aškrabić, S.M.; Babić, B.M.; Bajuk-Bogdanović, D.V. Nanocrystalline CeO2-δ as Effective Adsorbent of Azo Dyes. Langmuir 2014, 30, 11582–11590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, P.; Zhang, J.; Chen, F.; Anpo, M. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl. Catal. B Environ. 2009, 85, 148–154. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Zhang, J.; Hua, G. Synthesis and characterization of mesoporous CeO2 nanotube arrays. Microporous Mesoporous Mater. 2013, 171, 196–200. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Wang, S.; Liu, W.; Liu, X.; Guo, J.; Yang, Y. Mesoporous CeO2 nanoparticles assembled by hollow nanostructures: Formation mechanism and enhanced catalytic properties. CrystEngComm 2014, 16, 8777–8785. [Google Scholar] [CrossRef]
- Hartmann, P.; Brezesinski, T.; Sann, J.; Lotnyk, A.; Eufinger, J.-P.; Kienle, L.; Janek, J. Defect Chemistry of Oxide Nanomaterials with High Surface Area: Ordered Mesoporous Thin Films of the Oxygen Storage Catalyst CeO2-ZrO2. ACS Nano 2013, 7, 2999–3013. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Über die adsorption in lösungen. J. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Das, S.; Mishra, S. Insight into the isotherm modelling, kinetic and thermodynamic exploration of iron adsorption from aqueous media by activated carbon developed from Limonia acidissima shell. Mater. Chem. Phys. 2020, 245, 122751. [Google Scholar] [CrossRef]
- Schiewer, S.; Patil, S.B. Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresour. Technol. 2008, 99, 1896–1903. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, Z. Oxidation-Induced and Hydrothermal-Assisted Template-Free Synthesis of Mesoporous CeO2 for Adsorption of Acid Orange 7. Materials 2022, 15, 5209. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, R.; Zhou, Y. An eco-friendly route for template-free synthesis of high specific surface area mesoporous CeO2 powders and their adsorption for acid orange 7. RSC Adv. 2019, 9, 22366–22375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Li, R. Template-free synthesis of mesoporous CeO2 powders by integrating bottom-up and top-down routes for AO7 adsorption. RSC Adv. 2015, 5, 44828–44834. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shi, R.; Yang, P.; Song, X.; Zhu, Y.; Ma, Q. Fabrication of electronspun porous CeO2 nanofibers with large surface area for pollutants removal. Ceram. Int. 2016, 42, 14028–14035. [Google Scholar] [CrossRef]
- Zhao, P.S.; Gao, X.M.; Zhu, F.X.; Hu, X.M.; Zhang, L.L. Ultrasonic-assisted Solution-Phase Synthesis and Property Studies of Hierarchical Layer-by-Layer Mesoporous CeO2. Bull. Korean Chem. Soc. 2018, 39, 375–380. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, X.; Wang, F.; Kang, S.; Yin, C.; Li, X. Nanocasting synthesis of chromium doped mesoporous CeO2 with enhanced visible-light photocatalytic CO2 reduction performance. J. Hazard. Mater. 2017, 372, 69–76. [Google Scholar] [CrossRef]
- Perera, H.J. Removal of Acid Orange 7 Dye from Wastewater: Review. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–6 April 2020. [Google Scholar] [CrossRef]
- Mezohegyi, G.; Kolodkin, A.; Castro, U.I.; Bengoa, C.; Stuber, F.; Font, J.; Fortuny, A. Effective Anaerobic Decolorization of Azo Dye Acid Orange 7 in Continuous Upflow Packed-Bed Reactor Using Biological Activated Carbon System. Ind. Eng. Chem. Res. 2007, 46, 6788–6792. [Google Scholar] [CrossRef]
- Aber, S.; Daneshvar, N.; Soroureddin, S.M.; Chabok, A.; Asadpour-Zeynali, K. Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network. Desalination 2007, 211, 87–95. [Google Scholar] [CrossRef]
- Zheng, D.; Pi, P. Adsorption Behavior of Acid Dyestuffs on the Surface of Fly Ash. J. Dispers. Sci. Technol. 2010, 31, 1027–1032. [Google Scholar] [CrossRef]
- Master, D.; Mehta, M. Comparative adsorption of an acid dye with different activation of fly ash. Int. J. Eng. Sci. Res. Technol. 2014, 3, 417–429. Available online: http://www.ijesrt.com/issues%20pdf%20file/Archives-2014/June-2014/64.pdf (accessed on 1 June 2014).
- Gupta, V.K.; Mittal, A.; Gajbe, V.; Mittal, J. Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-Oiled Soya. Ind. Eng. Chem. Res. 2006, 45, 1446–1453. [Google Scholar] [CrossRef]
- Ashori, A.; Hamzeh, Y.; Ziapour, A. Application of soybean stalk for the removal of hazardous dyes from aqueous solutions. Polym. Eng. Sci. 2013, 54, 239–245. [Google Scholar] [CrossRef]
- Hamzeh, Y.; Ashori, A.; Azadeh, E.; Abdulkhani, A. Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater. Sci. Eng. C 2012, 32, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Janos, P. Sorption of dyes from aqueous solutions onto fly ash. Water Res. 2003, 37, 4938–4944. [Google Scholar] [CrossRef]
- Kimling, M.C.; Chen, D.; Caruso, R.A. Temperature-induced modulation of mesopore size in hierarchically porous amorphous TiO2/ZrO2 beads for improved dye adsorption capacity. J. Mater. Chem. A 2015, 3, 3768–3776. [Google Scholar] [CrossRef]
- Jia, L.; Liu, W.; Cao, J.; Wu, Z.; Yang, C. Modified multi-walled carbon nanotubes assisted foam fractionation for effective removal of acid orange 7 from the dyestuff wastewater. J. Environ. Manag. 2020, 262, 110260. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Ghiasvand, A.R.; Noorimotlagh, Z. Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: Equilibrium, kinetic, and thermodynamic study. Desalination Water Treat. 2014, 55, 252–262. [Google Scholar] [CrossRef]
- Ghasemi, A.; Shams, M.; Qasemi, M.; Afsharnia, M. Data on efficient removal of acid orange 7 by zeolitic imidazolate framework-8. Data Brief 2019, 23, 103783. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Soltani, R.D.C.; Khataee, A.R.; Shahriyar, S.; Nourmoradi, H. Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. J. Taiwan Inst. Chem. Eng. 2014, 45, 1783–1791. [Google Scholar] [CrossRef]
- Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D.D. Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube. Colloids Surf. A 2011, 379, 169–175. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Y.; Cheng, G.; Wang, Y.; Chen, R. Simultaneous removal of As(V)/Cr(VI) and acid orange 7 (AO7) by nanosized ordered magnetic mesoporous Fe-Ce bimetal oxides: Behavior and mechanism. Chemosphere 2019, 218, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhang, M.; Liu, H.; Ouyang, S.; Ding, N.; Zhang, P. Adsorption behavior and mechanism of acid orange 7 and methylene blue on self-assembled three-dimensional MgAl layered double hydroxide: Experimental and DFT investigation. Appl. Surf. Sci. 2020, 522, 146370. [Google Scholar] [CrossRef]
- Cai, W.; Chen, F.; Shen, X.; Chen, L.; Zhang, J. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping. Appl. Catal. B Environ. 2010, 101, 160–168. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Chen, F. Improving the catalytic activity of CeO2/H2O2 system by sulfation pretreatment of CeO2. J. Mol. Catal. A Chem. 2014, 381, 38–45. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Feng, Z.; Sun, D.; Wang, T.; Li, R.; Xu, Y. Solvothermal synthesis and characterization of ceria with solid and hollow spherical and multilayered morphologies. Appl. Surf. Sci. 2014, 322, 147–154. [Google Scholar] [CrossRef]
Adsorbent Name | Synthetic Method of Adsorbent | qm(mg/g) or Adsorption Rate (%) |
---|---|---|
Upflow packed−bed reactor containing activated carbon [60] | Activated carbon from Merck, granules of 2.5 mm | 99% within 2 min (C0 = 110 mg/L) |
Powdered activated carbon [61] | Procured from Merck | 440 mg/g |
Grade II fly ash [62] | Obtained from Huangpu Fuel Electric Plant, Guangzhou, China | 1.10 mg/g |
Fly ash [63] | Collected from coal fired boiler, and activated technique with heat treatment, alkali treatment and acid treatment. | 3.14~12.72 mg/g |
Bottom ash [64] | Procured from Bharat Heavy Electrical Limited in Bhopal, India. | 68% (C0 = 35 mg/L) |
Agro−residue (Soybean stalk) [65] | Grinding and screening | 17.5 (pH = 2.0) |
Agro−residue (Canola stalks) [66] | Grinding and screening | 25.1 (pH = 2.5) |
Brown coal fly ashes [67] | Collected at electrostatic precipitators in a power plant in the Czech Republic. | 82.82 mg/g |
Porous millimetre−sized amorphous TiO2/ZrO2 [68] | Template method and heating at 500 °C | >40 |
Multi−walled carbon nanotubes [69] | Floating catalyst chemical vapor deposition | 47.72 mg/g |
Iron oxide−loaded biochar [16] | Modification and pyrolysis at 600 °C | 59.34 (pH = 6.0) |
Activated carbon coated with ZnO [70] | Modification | 66.22 mg/g |
Zeolitic imidazolate framework−8 [71] | Wet chemical process at room temperature | 80.47 mg/g (pH = 6.0) |
Mesoporous activated carbon [72] | Heating milk vetch shrub at 600 °C | 99.01 mg/g |
One−dimensional mesoporous TiO2 nanotube [73] | Hydrothermal method and calcination at 400 °C | 137.7 (pH = 3) |
Magnetic mesoporous Fe−Ce bimetal oxides [74] | Hard template synthesis method | 156.52 mg/g |
Nickel (II) oxide [22] | Calcining nickel oxalate | 178.57 (pH = 5.5) |
3D MgAl layered double hydroxide [75] | Hydrothermal process | 485.6 mg/g |
CaO/CeO2 composite [42] | Co−precipitation process and annealing at 800 °C | 92.68% (C0 = 10 mg/L) |
CeO2 nanoparticles [76] | Hydrothermal procedure combined with calcination at 500 °C | ~23% (C0 = 35 mg/L) |
CeO2 powders [77] | Precipitation method combined with calcination at 500 °C | ~56% (C0 = 35 mg/L) |
Multilayered CeO2 microspheres [78] | Template−free solvothermal process combined with calcination at 500 °C | ~99% (C0 = 35 mg/L) |
Mesoporous CeO2 [53] | Template−free hydrothermal process | 94.2% (C0 = 40 mg/L) |
Mesoporous CeO2 [54] | Template−free hydrothermal process | 90.07% (C0 = 100 mg/L) |
CeO2·xH2O [40] | Precipitation method using NH3·H2O as a precipitant | 164 mg/g |
Porous CeO2 in this work | Template−free hydrothermal process | ~100% (C0 = 100 mg/L) |
ΔG0 (KJ/mol) | K0 (L/g) | ΔH0 (KJ/mol) | ΔS0 (J/mol·K) | R2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
25 °C | 30 °C | 40 °C | 50 °C | 60 °C | 25 °C | 30 °C | 40 °C | 50 °C | 60 °C | |||
−6.54 | −6.40 | −5.82 | −5.38 | −4.86 | 14.00 | 12.66 | 9.35 | 7.42 | 5.78 | −21.15 | −48.87 | 0.9973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Gao, L.; Yang, J.; Yang, Q.; Peng, W.; Ding, Z. Effective and Efficient Porous CeO2 Adsorbent for Acid Orange 7 Adsorption. Materials 2023, 16, 2650. https://doi.org/10.3390/ma16072650
Xu Y, Gao L, Yang J, Yang Q, Peng W, Ding Z. Effective and Efficient Porous CeO2 Adsorbent for Acid Orange 7 Adsorption. Materials. 2023; 16(7):2650. https://doi.org/10.3390/ma16072650
Chicago/Turabian StyleXu, Yaohui, Liangjuan Gao, Jinyuan Yang, Qingxiu Yang, Wanxin Peng, and Zhao Ding. 2023. "Effective and Efficient Porous CeO2 Adsorbent for Acid Orange 7 Adsorption" Materials 16, no. 7: 2650. https://doi.org/10.3390/ma16072650