Residual Stress Evolution in Low-Alloyed Steel at Three Different Length Scales
Abstract
:1. Introduction
1.1. Macroscopic Residual Stresses
1.2. Mesoscopic Residual Stresses
- The content of Cr, Mo and C vary between the segregated and depleted region. This variation affects the martensite start temperature, thermal expansion, volumetric change during phase transformation and the Young’s modulus in the different regions. They are adjusted accordingly. For carbon only the relative composition change is known from high energy XRD measurements and not the absolute content. This complicates the estimation of consistent elastic parameters on lower length scales and made an iteration step prior to the residual stress calculations necessary.
- The local chemical variation may also affect the number, shape and size of precipitates. However, this effect is neglected in this work and shape and size of precipitates is considered to be the same in both segregated and depleted regions. Also the effects of precipitates on plastic properties are neglected, as only the elastic regime is relevant for residual stress formation. In the elastic regime, the properties of matrix and precipitates are homogenized using the microscopic model.
1.3. Microscopic Residual Stresses
2. Models, Materials and Methods
2.1. Scale Bridging
2.2. Phase Transformation Model
2.3. Macroscopic Model
2.4. Mesoscopic Model
- The thermal expansion is treated as a function of carbon content from 0.25 to 0.4 wt%. The plot in Figure 5a shows the JMatPro calculations for 0.25, 0.275, 0.3 and 0.35 wt%C avaraged over a temperature range from 25 °C to 370 °C with 0.25 wt%C as reference value, see Figure 5a. The full data set for the chemistry and temperature dependent thermal expansion is shown in Figure 6.
2.5. Microscopic Model
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kudish, I.I.; Burris, K.W. Modern state of experimentation and modeling in contact fatigue phenomenon: Part I—contact fatigue. Normal and tangential contact and residual stresses. Nonmetallic inclusions and lubricant contamination. Crack initiation and crack propagation. Surface and Subsurface Cracks. Tribol. Trans. 2000, 43, 187–196. [Google Scholar] [CrossRef]
- Dabah, E.; Kannengiesser, T.; Eliezer, D.; Boellinghaus, T. Hydrogen interaction with residual stresses in steel studied by synchrotron X-ray diffraction. Mater. Sci. Forum 2014, 772, 91–95. [Google Scholar] [CrossRef]
- Anijdan, S.H.M.; Arab, G.; Sabzi, M.; Sadeghi, M.; Eivani, A.R.; Jafarian, H.R. Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: Influence of heat treatment and its subsequent microstructural changes. J. Mater. Res. Technol. 2021, 15, 1–16. [Google Scholar] [CrossRef]
- Bouchard, P.J.; Withers, P.J. The appropriateness of residual stress length scales in structural integrity. J. Neutron Res. 2004, 12, 81–91. [Google Scholar] [CrossRef]
- Rammerstorfer, F.G.; Plankensteiner, A.F.; Fischer, F.D.; Antretter, T. Hierarchical models for simulating the mechanical behavior of heterogeneous materials: An approach to high speed tool steel 1. Mater. Sci. Eng. A 1999, 259, 73–84. [Google Scholar] [CrossRef]
- Golanski, D.; Terada, K.; Kikuchi, N. Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method. Comput. Mech. 1997, 19, 188–202. [Google Scholar] [CrossRef]
- Sponseller, D.L.; Padfield, C.J.; Urband, B.E. Factors Affecting Crack Path, Edge Cracking, and KISSC Rating During Testing of Low-Alloy Steels by the NACE Double-Cantilever-Beam Method of TM0177-96(D). In Proceedings of the NACE CORROSION, San Diego, CA, USA, 16–20 March 2003. NACE-03103. [Google Scholar]
- Svoboda, J.; Fischer, F.D. Modelling for hydrogen diffusion in metals with traps revisited. Acta Mater. 2012, 60, 1211–1220. [Google Scholar] [CrossRef]
- Brunbauer, S.; Winter, G.; Antretter, T.; Staron, P.; Ecker, W. Residual stress and microstructure evolution in steel tubes for different cooling conditions—Simulation and verification. Mater. Sci. Eng. A 2019, 747, 73–79. [Google Scholar] [CrossRef]
- Leitner, S.; Winter, G.; Klarner, J.; Antretter, T.; Ecker, W. Model-Based Residual Stress Design in Multiphase Seamless Steel Tubes. Materials 2020, 13, 439. [Google Scholar] [CrossRef] [Green Version]
- Withers, P.J.; Bhadeshia, H.K.D.H. Residual stress part 1—Measurement techniques. Mater. Sci. Technol. 2001, 17, 355–365. [Google Scholar] [CrossRef]
- Sauraw, A.; Sharma, A.K.; Fydrych, D.; Sirohi, S.; Gupta, A.; Świerczyńska, A.; Pandey, C.; Rogalski, G. Study on Microstructural Characterization, Mechanical Properties and Residual Stress of GTAW Dissimilar Joints of P91 and P22 Steels. Materials 2021, 14, 6591. [Google Scholar] [CrossRef] [PubMed]
- Siwecki, T.; Koziel, T.; Hutchinson, W.B.; Hansson, P. Effect of Micro-Segregation on Phase Transformation and Residual Stress. Mater. Sci. Forum 2007, 539–543, 4596–4601. [Google Scholar] [CrossRef]
- Douin, J.; Donnadieu, P.; Houdellier, F. Elastic strain around needle-shaped particles embedded in Al matrix. Acta Mater. 2010, 58, 5782–5788. [Google Scholar] [CrossRef]
- Hsueh, C.; Becher, P.F. Residual thermal stresses in ceramic composites. Part I: With ellipsoidal inclusions. Mater. Sci. Eng. A 1996, 212, 22–28. [Google Scholar] [CrossRef]
- Souissi, M.; Numakura, H. Elastic properties of Fe-C and Fe-N martensites. ISIJ Int. 2015, 55, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Koistinen, D.P.; Marburger, R.E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 1959, 7, 59–60. [Google Scholar] [CrossRef]
- Garrett, R.P.; Xu, S.; Lin, J.; Dean, T.A. A model for predicting austenite to bainite phase transformation in producing dual phase steels. Int. J. Mach. Tools Manuf. 2004, 44, 831–837. [Google Scholar] [CrossRef]
- Mahnken, R.; Schneidt, A.; Tschumak, S.; Maier, H.J. On the simulation of austenite to bainite phase transformation. Comput. Mater. Sci. 2011, 50, 1823–1829. [Google Scholar] [CrossRef]
- Dassault Systems. Abaqus Standard. Available online: https://www.3ds.com/products-services/simulia/products/abaqus/abaqusstandard/ (accessed on 14 March 2022).
- Bohemen, S.M.C. Bainite and martensite start temperature calculated with exponential carbon dependence. Mater. Sci. Technol. 2012, 28, 487–495. [Google Scholar] [CrossRef]
- Moyer, J.M.; Ansell, G.S. The volume expansion accompanying the martensite transformation in iron-carbon alloys. Metall. Trans. A 1975, 6, 1785–1791. [Google Scholar] [CrossRef]
- Sente Software Ltd. Jmatpro. Available online: https://www.sentesoftware.co.uk/jmatpro (accessed on 28 March 2022).
- Frost, H.J.; Ashby, M.F. Deformation-Mechanism Maps for Pure Iron, Two Austenitic Stainless Steels, and a Low-Alloy Ferritic Steel. In Fundamental Aspects of Structural Alloy Design; Springer: Boston, MA, USA, 1977; pp. 27–65. [Google Scholar] [CrossRef]
- Zamberger, S.; Wojcik, T.; Klarner, J.; Klösch, G.; Schifferl, H.; Kozeschnik, E. Computational and experimental analysis of carbo-nitride precipitation in tempered martensite. Steel Res. Int. 2013, 84, 20–30. [Google Scholar] [CrossRef]
- Reeber, R.R.; Wang, K. Lattice Parameters and Thermal Expansion of Important Semiconductors and Their Substrates. Mat. Res. Soc. Symp. Proc. 2000, 614, 1–12. [Google Scholar] [CrossRef]
- Soga, N.; Anderson, O.L. High-Temperature Elastic Properties of Polycrystalline MgO and Al2O3. J. Am. Ceram. Soc. 1966, 49, 355–359. [Google Scholar] [CrossRef]
- Hummer, D.R.; Heaney, P.J.; Post, J.E. Thermal expansion of anatase and rutile between 300 and 575 K using synchrotron powder X-ray diffraction. Powder Diffr. 2007, 22, 352–357. [Google Scholar] [CrossRef]
- Shojaee, E.; Mohammadizadeh, M.R. First-principles elastic and thermal properties of TiO2: A phonon approach. J. Phys. Condens. Matter. 2010, 22, 015401. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, S. Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations. J. Alloys Compd. 2012, 528, 20–27. [Google Scholar] [CrossRef]
- Wolf, W.; Podloucky, R.; Antretter, T.; Fischer, F.D. First-principles study of elastic and thermal properties of refractory carbides and nitrides. Philos. Mag. B 1999, 79, 839–858. [Google Scholar] [CrossRef]
- Krasnenko, V.; Brik, M.G. First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X = Ti, V, Cr, Nb, Mo, Hf). Solid State Sci. 2012, 14, 1431–1444. [Google Scholar] [CrossRef]
- Lönnberg, B. Thermal expansion studies on the subcarbides of group V and VI transition metals. J. Less Common Met. 1986, 120, 135–146. [Google Scholar] [CrossRef]
- Wood, I.G.; Vočadlo, L.; Knight, K.S.; Dobson, D.P.; Marshall, W.G.; Price, G.D.; Brodholt, J. Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Appl. Crystallogr. 2004, 37, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Nikolussi, M.; Shang, S.L.; Gressmann, T.; Leineweber, A.; Mittemeijer, E.J.; Wang, Y.; Liu, Z.K. Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence. Scr. Mater. 2008, 59, 814–817. [Google Scholar] [CrossRef]
- Chong, X.Y.; Jiang, Y.H.; Zhou, R.; Feng, J. Multialloying effect on thermophysical properties of Cr7C3-type carbides. J. Am. Ceram. Soc. 2017, 100, 1588–1597. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, Y.; Zhou, R. First-principles study on stability and mechanical properties of Cr7C3. Rare Met. Mater. And Engineering 2014, 43, 2903–2907. [Google Scholar] [CrossRef]
- Williams, D.S. Elastic stiffness and thermal expansion coefficient of boron nitride films. J. Appl. Phys. 1985, 57, 2340–2342. [Google Scholar] [CrossRef]
- Grimsditch, M.; Zouboulis, E.S.; Polian, A. Elastic constants of boron nitride. J. Appl. Phys. 1994, 76, 832–834. [Google Scholar] [CrossRef]
- Brunbauer, S.; Klarner, J.; Sonnleitner, R.; Ecker, W.; Winter, G. Steel concepts and manufacturing processes for optimized performance properties of seamless steel tubulars. In Proceedings of the NACE International, 2nd Conference and Expo Genoa, Genoa, Italy, 27–29 May 2018. [Google Scholar]
B | E | G | |||||
---|---|---|---|---|---|---|---|
(GPa) | (GPa) | (GPa) | (-) | (MPa) | (MPa) | ||
Al2O3 | 7.278 [26] | 249 [27] | 399 [27] | 162 [27] | 0.24 * | −402.5 | 21.2 |
MgO | 1.272 [26] | 164 [27] | 310 [27] | 130 [27] | 0.19 * | 351.0 | −18.5 |
TiO | 5.783 [28] | 262 [29] | 294 * | 112 * | 0.31 * | −633.1 | 33.3 |
TiN | 5.678 [30] | 277 * | 459 [31] | 188 [31] | 0.22 [31] | −658.7 | 34.7 |
TiC | 4.918 [30] | 242 [32] | 474 [32] | 187 * | 0.17 * | −746.1 | 39.3 |
NbC | 5.101 [31] | 267 [32] | 438 [32] | 188 * | 0.23 * | −739.3 | 38.9 |
VC | 5.532 [31] | 308 [32] | 513 [32] | 210 * | 0.22 * | −699.3 | 36.8 |
MoC | 6.507 [32] | 328 [32] | 410 [32] | 159 * | 0.29 * | −554.8 | 29.2 |
Mo2C | 5.167 [33] | 300 [32] | 322 [32] | 122 * | 0.32 * | −751.6 | 39.6 |
Fe3C | 9.583 [34] | 224 [35] | 242 * | 92 [35] | 0.36 * | −59.8 | 3.1 |
Cr7C3 | 6.958 [36] | 312 [37] | 226 * | 82 * | 0.38 * | −477.5 | 25.1 |
BN | 5.000 [38] | 400 [39] | 923 * | 414 * | 0.11 * | −828.7 | 43.6 |
Fe | 10.00 [9] | 174 [9] | 209 * | 80 * | 0.3 [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitner, S.; Winter, G.; Klarner, J.; Antretter, T.; Ecker, W. Residual Stress Evolution in Low-Alloyed Steel at Three Different Length Scales. Materials 2023, 16, 2568. https://doi.org/10.3390/ma16072568
Leitner S, Winter G, Klarner J, Antretter T, Ecker W. Residual Stress Evolution in Low-Alloyed Steel at Three Different Length Scales. Materials. 2023; 16(7):2568. https://doi.org/10.3390/ma16072568
Chicago/Turabian StyleLeitner, Silvia, Gerald Winter, Jürgen Klarner, Thomas Antretter, and Werner Ecker. 2023. "Residual Stress Evolution in Low-Alloyed Steel at Three Different Length Scales" Materials 16, no. 7: 2568. https://doi.org/10.3390/ma16072568
APA StyleLeitner, S., Winter, G., Klarner, J., Antretter, T., & Ecker, W. (2023). Residual Stress Evolution in Low-Alloyed Steel at Three Different Length Scales. Materials, 16(7), 2568. https://doi.org/10.3390/ma16072568